
大数据:能源互联网的支柱_数据分析师考试
能源互联网+路线图逐渐明晰,万亿产业蛋糕呼之欲出。近几个月来,据不完全统计,A股能源互联网+概念公司有近七成定增募资加码能源互联网+相关业务。显然,企业是冲着商业前景而来的。这些企业中,不乏大数据企业。在能源互联网+时代,只有挖潜大数据,才能尽享能源盛宴。
“占GDP20%以上的能源产业互联网+在未来10年,其带来的直接和附带产业价值将超过20万亿元。”中国智慧能源产业技术创新联盟常务副理事长刘东向表示。
处于能源互联网+“风口”,未来将会有越来越多的互联网+企业进入能源领域,相关产业链将最大化受益。
特别是在电力大数据方面,围绕大数据的分析、应用已不鲜见。从电能计量到设备检修、巡视记录,从调控监控信号到生产报修数据……将成为能源互联网+的重要组成部分。
大数据是能源互联网+信息支撑
近日发布的《“互联网++”行动指导意见》,敲定了智慧能源等11个重点领域发展目标任务以及相关支持措施。业界普遍认为,这将对能源互联网+的落地产生重要影响。
此前也有媒体称,由国家能源局牵头,工信部等参与制定的能源互联网+顶层设计《互联网++智慧能源行动计划》文件,最晚将于年内出台。
可见,能源互联网+在加速。也意味着,未来积极布局能源互联网+的新能源企业有望迎来更大发展空间。能源互联网+是综合运用先进的电力电子技术、信息技术和智慧管理技术将大量由分布式能源采集装置、分布式储存装置和各种类型负载构成的新型电力网络、石油网络、天然气网络等能源节点互联起来,以实现能源双向流动的能量对等交换与共享网络。
迈哲华投资管理咨询有限公司咨询总监曹寅如此解释能源互联网+,发电设备、电网设备、用电设备和用户连接到能源互联网+后,可以进行实时的信息交换,从而实现对整个系统的效率优化和安全调度。
“在能源互联网+发展过程中,“大数据”是未来能源互联网+发展的重要信息数据支撑,而“云计算”作为计算资源的底层,支撑着上层的大数据处理,这些将会成为能源互联网+中信息数据交互的可靠保障。”华北电力大学教授曾鸣表示。
此前,多家软件公司已经布局这一领域。电网企业在推动智能电网、四网合一试点;电气类公司在推动智慧能源服务、智能电器产品。目前,电网企业、电气制造服务商、软件商都纷纷和能源互联网+搭上关系。
多家企业业务向大数据延伸
伴随能源互联网+概念的加速落地,不少企业近来更是紧锣密鼓地布局该业务。Wind数据统计显示,过去一个多月,上市公司对能源互联网+相关业务的定增募资热情明显升温。A股涉及能源互联网+概念的17家上市公司中,有7成上市公司通过定增码能源互联网+业务。
积成电子今年3月成立能源公司专门从事能源互联网+业务,版图包括智慧城市、节能咨询、新能源电站开发、云平台等。此外,该公司合作打造的山东地区首家能源互联网+云平台6月中旬即将上线;公司借助百万级别智能电表+80万智能电表+10万智能燃气入口,有意与互联网+巨头合作搭建信息平台,未来有望在能源互联网+领域进一步并购。
国内的逆变器龙头阳光电源宣布与“阿里云”达成战略合作协议,基于全新发布的“智慧光伏云iSolarCloud”平台,共同推动新能源向“互联网++”的产业革新。
南都电源在其公告中称,该公司拟增发募集24.5亿元,用于新能源电池项目及分布式能源网络云数据管理平台的建设。公司拟投资3.9亿元用于在全国建设总容量为390兆瓦时的分布式新能源网络及平台建设,通过先进的BMS进行智能控制,并采用数据云进行数据采集分析,为用户提供整体能源优化方案,完善能源互联网+布局。
目前市场上很多能源互联网+概念的公司都是原来做电力设备的,如电力监控、智能电表等,他们有从事能源互联网+的先天优势,比如说电表能够记录用电数据,借助大数据的优势结合科技平台就能实现能源互联网+的交互功能。
大型企业可以搭建私有能源互联网+系统和能源管理平台,但由于成本原因,中小企业则需要借助云计算获取第三方服务。
证券分析人士认为,就互联网+企业而言,它们的优势在于云计算、大数据的技术以及移动端的用户量上,与大型电企合作也是一个思路,肯定会有其他大型互联网+企业进入这一领域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25