京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1、各分发渠道联运资源的导入;
2、付费广告导入(广告联盟、应用墙等);
3、自有资源与其它CP的免费互换;
4、用户的自然导入;
这里插播先简单介绍以下移动游戏推广的几种结算方式
1、CPS(Cost per Sale) 按销售额计费 :根据网络广告所产生的直接销售数量而付费的一种定价模式可以是按销售额分成。
各渠道联运:渠道商用自有流量为游戏导入用户,根据相关用户的充值流水,按照事先规定好的分成比例进行结算
官方商店(AppStore、Google Play等):用户通过官方商店下载的游客户端充值后,根据充值流水按照固定的比例支付渠道费用;
2、CPD(Cost per Day) 按天数计费(或 包时段付费):在固定时间内(通常是24小时)买断固定广告位。互联网媒体广告一般采用这种结算方式,如视频类、banner、弹窗等;广告主在固定时段内买断广告位,媒体不保证导入的用户量;
3、CPC(Cost per Click) 按点击付费:根据广告被点击的次数收费。关键词广告一般采用这种定价模式;
4、CPA(Cost per Action) 按行动付费:对于用户行动有特别的定义,包括形成一次交易、获得一个注册用户、或者对网络广告的一次点击等;在移动游戏领域,“A”通常可拆解为 Down(按下载付费)、Activation(按激活付费)、Login(按登录付费);
联盟广告、应用墙 一般采用这种结算方式;
回到拉新的任务上,我们在做市场推广的时候,除了
1、上新渠道,拿到更多的联运资源
2、增加市场费用,增加更多广告导入
3、提升产品质量、做好口碑管理增加自然导入
还可以从哪些方面帮助我们提升新增用户的导入数量和质量?这里,我们先对“新增用户”做一个定义:
NU(New Users) 新增用户:统计周期内,首次注册账号并登录游戏的用户;
备注:入门篇中所定义的“用户”均以“账号”进行衡量;账号:游戏账号库中的唯一标识,在单款游戏中全局唯一;
=================1、通过导入环节各个节点的优化来提升新增导入量===================
我们都会关注用户新增之后的流失行为,并通过各种数据分析来发现可能导致用户流失的原因并作相应的功能调整;其实,从用户看到广告素材开始,你的用户“流失”就已经开始了;
我们可以对“从用户看到或得知信息开始,到用户登录游戏”的每一个步骤进行拆解:
曝光、点击、下载、安装、激活、注册、登录,在这些数量指标的背后我们关注的本质是一个 转换率;
我把转化率定义为:在产品设计的每个可控环节当中进行埋点,并监控每个节点的漏斗转换,用于帮助发现产品设计中的问题;
通过改善这些环节,我们的可以获得更多的新增;
由于技术问题,在移动广告和渠道推广监控过程中,通常情况下我们只能获取到 点击->激活->登录 这3个节点的数据;(具体的原因,我会在《【高阶篇】渠道监控平台设计及开发》 中说明)
首先,是“曝光->点击”环节:
Clicks 点击次数:广告素材被点击的次数,一台设备可以产生多次点击;
唯一点击数:规定时间段内,广告被同一台设备多次点击只计算1次;
在移动广告投放中,一般用户点击之后直接跳转到下载地址;所以通常情况下,点击即代表用户开始下载;
也有部分会先跳转到游戏介绍详情(比如:给 AppStore包代量的时候),然后在点击下载按钮;但是这个时候通常跳转的是媒体或分发市场自己的下载地址,所以无法获取下载节点的数据;
影响点击量的因素 主要有 位置、Icon、广告素材等;很多CP在做市场推广之前是没有做素材测试的,在正式推广之前,买一些联盟和积金墙的量 用于做素材的 A/B test 是很有必要的;一个好的素材对点击量有非常大的影响;
其次,是“点击->激活”环节:
Activations 激活数:通过广告下载客户端并安装后,打开客户端的设备数;
激活率:激活数 / 唯一点击数;
在移动端上,通常情况下载完成后都会自动弹出安装提示;因此影响激活率的因素 主要有:
1、包大小、联网环境、运营商 这些因素会影响用户的下载成功率;
2、程序BUG 影响客户端安装成功率;
最后,是“激活->登录”环节:
Logins 登录数:通过广告下载安装客户端后,打开客户端并登录游戏的账号数;
激活登录率:登录账号数 / 激活数;
在移动端上,通常情况下载完成后都会自动弹出安装提示;
因此影响激活率的因素 主要有
包大小、联网环境、运营商 这些因素会影响用户的下载成功率;
程序BUG 影响客户端安装成功率;
除了优化产品自身的一些细节,提高各个环节的转化率外;对渠道各项转化率指标的长期监控,以及追踪不同渠道、媒体来源用户的后续质量(包括:登录、活跃、留存、付费等),能够帮助我们快速发现渠道异常、调整广告投放策略等;
=================2、通过新增后续行为分析以及实时监控优化投放策略===================
一、通过对转换率的实时监控,当某个环节数据出现异常的时候可以及时发送警报通知管理员,及时排查是媒体的原因,还是CP自身的原因;
二、在用户新增登录环节之后,对其后续的行为做持续跟踪,用于判断渠道来源的用户质量
常用的指标主要有以下几个:
OSUR(One Session User Rate) 一次会话用户占比:用户从新增之日起截止统计当日只有一次登录行为,且登录时长地域规定阈值的用户数,占统计周期内新增用户的比例;
ACT_N(Active N_Day)新增N日活跃:新增用户在其首次注册登入后第N天还有登录的用户占新增用户的比例;在一次用户占比没有太大差异的情况下,用于对比不同渠道用户质量;
LTV_N(Lift Time Value N_Day)生命周期价值:平均一个账号在其生命周期内(第一次登录游戏到最后一次登录游戏),为该游戏创造的收入总计;结合导入成本 CPL(每登录用户成本) 来判断产品的回本周期;
通过数量指标、转化率指标、质量指标 和 成本指标 的分析,结合实际业务需求来不断调整广告投放策略;如,一些媒体能够导入大量用户但是用户质量较低,就适合新游冲榜;有的媒体很难导入用户,但是导入的用户质量都非常好,适合长期稳定投入等;(文章来源:CDA数据分析师)
综上所述,可以将市场推广相关指标分为4类:数量指标、转化率指标、质量指标和成本指标.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12