
1、各分发渠道联运资源的导入;
2、付费广告导入(广告联盟、应用墙等);
3、自有资源与其它CP的免费互换;
4、用户的自然导入;
这里插播先简单介绍以下移动游戏推广的几种结算方式
1、CPS(Cost per Sale) 按销售额计费 :根据网络广告所产生的直接销售数量而付费的一种定价模式可以是按销售额分成。
各渠道联运:渠道商用自有流量为游戏导入用户,根据相关用户的充值流水,按照事先规定好的分成比例进行结算
官方商店(AppStore、Google Play等):用户通过官方商店下载的游客户端充值后,根据充值流水按照固定的比例支付渠道费用;
2、CPD(Cost per Day) 按天数计费(或 包时段付费):在固定时间内(通常是24小时)买断固定广告位。互联网媒体广告一般采用这种结算方式,如视频类、banner、弹窗等;广告主在固定时段内买断广告位,媒体不保证导入的用户量;
3、CPC(Cost per Click) 按点击付费:根据广告被点击的次数收费。关键词广告一般采用这种定价模式;
4、CPA(Cost per Action) 按行动付费:对于用户行动有特别的定义,包括形成一次交易、获得一个注册用户、或者对网络广告的一次点击等;在移动游戏领域,“A”通常可拆解为 Down(按下载付费)、Activation(按激活付费)、Login(按登录付费);
联盟广告、应用墙 一般采用这种结算方式;
回到拉新的任务上,我们在做市场推广的时候,除了
1、上新渠道,拿到更多的联运资源
2、增加市场费用,增加更多广告导入
3、提升产品质量、做好口碑管理增加自然导入
还可以从哪些方面帮助我们提升新增用户的导入数量和质量?这里,我们先对“新增用户”做一个定义:
NU(New Users) 新增用户:统计周期内,首次注册账号并登录游戏的用户;
备注:入门篇中所定义的“用户”均以“账号”进行衡量;账号:游戏账号库中的唯一标识,在单款游戏中全局唯一;
=================1、通过导入环节各个节点的优化来提升新增导入量===================
我们都会关注用户新增之后的流失行为,并通过各种数据分析来发现可能导致用户流失的原因并作相应的功能调整;其实,从用户看到广告素材开始,你的用户“流失”就已经开始了;
我们可以对“从用户看到或得知信息开始,到用户登录游戏”的每一个步骤进行拆解:
曝光、点击、下载、安装、激活、注册、登录,在这些数量指标的背后我们关注的本质是一个 转换率;
我把转化率定义为:在产品设计的每个可控环节当中进行埋点,并监控每个节点的漏斗转换,用于帮助发现产品设计中的问题;
通过改善这些环节,我们的可以获得更多的新增;
由于技术问题,在移动广告和渠道推广监控过程中,通常情况下我们只能获取到 点击->激活->登录 这3个节点的数据;(具体的原因,我会在《【高阶篇】渠道监控平台设计及开发》 中说明)
首先,是“曝光->点击”环节:
Clicks 点击次数:广告素材被点击的次数,一台设备可以产生多次点击;
唯一点击数:规定时间段内,广告被同一台设备多次点击只计算1次;
在移动广告投放中,一般用户点击之后直接跳转到下载地址;所以通常情况下,点击即代表用户开始下载;
也有部分会先跳转到游戏介绍详情(比如:给 AppStore包代量的时候),然后在点击下载按钮;但是这个时候通常跳转的是媒体或分发市场自己的下载地址,所以无法获取下载节点的数据;
影响点击量的因素 主要有 位置、Icon、广告素材等;很多CP在做市场推广之前是没有做素材测试的,在正式推广之前,买一些联盟和积金墙的量 用于做素材的 A/B test 是很有必要的;一个好的素材对点击量有非常大的影响;
其次,是“点击->激活”环节:
Activations 激活数:通过广告下载客户端并安装后,打开客户端的设备数;
激活率:激活数 / 唯一点击数;
在移动端上,通常情况下载完成后都会自动弹出安装提示;因此影响激活率的因素 主要有:
1、包大小、联网环境、运营商 这些因素会影响用户的下载成功率;
2、程序BUG 影响客户端安装成功率;
最后,是“激活->登录”环节:
Logins 登录数:通过广告下载安装客户端后,打开客户端并登录游戏的账号数;
激活登录率:登录账号数 / 激活数;
在移动端上,通常情况下载完成后都会自动弹出安装提示;
因此影响激活率的因素 主要有
包大小、联网环境、运营商 这些因素会影响用户的下载成功率;
程序BUG 影响客户端安装成功率;
除了优化产品自身的一些细节,提高各个环节的转化率外;对渠道各项转化率指标的长期监控,以及追踪不同渠道、媒体来源用户的后续质量(包括:登录、活跃、留存、付费等),能够帮助我们快速发现渠道异常、调整广告投放策略等;
=================2、通过新增后续行为分析以及实时监控优化投放策略===================
一、通过对转换率的实时监控,当某个环节数据出现异常的时候可以及时发送警报通知管理员,及时排查是媒体的原因,还是CP自身的原因;
二、在用户新增登录环节之后,对其后续的行为做持续跟踪,用于判断渠道来源的用户质量
常用的指标主要有以下几个:
OSUR(One Session User Rate) 一次会话用户占比:用户从新增之日起截止统计当日只有一次登录行为,且登录时长地域规定阈值的用户数,占统计周期内新增用户的比例;
ACT_N(Active N_Day)新增N日活跃:新增用户在其首次注册登入后第N天还有登录的用户占新增用户的比例;在一次用户占比没有太大差异的情况下,用于对比不同渠道用户质量;
LTV_N(Lift Time Value N_Day)生命周期价值:平均一个账号在其生命周期内(第一次登录游戏到最后一次登录游戏),为该游戏创造的收入总计;结合导入成本 CPL(每登录用户成本) 来判断产品的回本周期;
通过数量指标、转化率指标、质量指标 和 成本指标 的分析,结合实际业务需求来不断调整广告投放策略;如,一些媒体能够导入大量用户但是用户质量较低,就适合新游冲榜;有的媒体很难导入用户,但是导入的用户质量都非常好,适合长期稳定投入等;(文章来源:CDA数据分析师)
综上所述,可以将市场推广相关指标分为4类:数量指标、转化率指标、质量指标和成本指标.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14