京公网安备 11010802034615号
经营许可证编号:京B2-20210330
第二节 General Factorial过程
6.2.1 主要功能
调用此过程可对完全随机设计资料、配伍设计资料、析因设计资料、正交设计资料等等进行多因素方差分析或协方差分析。
6.2.2 实例操作
[例6-2]下表为三因素析因实验的资料,请用方差分析说明不同基础液与不同血清种类对钩端螺旋体的培养计数的影响。

6.2.2.1 数据准备
激活数据管理窗口,定义变量名:基础液为base,血清种类为sero,血清浓度为pct,钩端螺旋体的培养计数为X,按顺序输入相应数值,建立数据库。
6.2.2.2 统计分析
激活Statistics菜单选ANOVA Models中的General Factorial...项,弹出General Factorial ANOVA对话框(图6.3)。在对话框左侧的变量列表中选变量x,点击O钮使之进入Dependent Variable框;选要控制的分组变量base、sero和pct,点O钮使之进入Factor(s)框中,并分别点击Define Range钮,在弹出的General Factorial ANOVA:Define Range对话框中确定各变量的起止值,本例变量base的起止值为1、3,变量sero的起止值为1、2,变量pct的起止值为1、2。之后点击OK钮即可。

6.2.2.3 结果解释
在结果输出窗口中,系统显示48个观察值进入统计,三个因素按其各自水平共产生12种组合。
分析表明,模型总效应的F值为10.55,P值 < 0.001,说明三因素间存在有交互作用。单因素效应和交互效应导致的组间差别比较结果是:
单因素组间比较:
A:基础液(BASE)
F = 4.98,P = 0.012,说明三种培养基培养钩体的计数有差别;
B:血清种类(SERO)
F = 61.265,P < 0.001,说明两种血清培养钩体的计数有差别;
C:血清浓度(PCT)
F = 3.49,P = 0.070,说明两种血清浓度培养钩体的计数无差别。
两因素构成的一级交互作用:
A×B:基础液(BASE)×血清种类(SERO)
F = 5.16,P = 0.011,交互作用明显;
B×C:血清种类(SERO)×血清浓度(PCT)
F = 15.96,P < 0.001,交互作用明显;
A×C:基础液(BASE)×血清浓度(PCT)
F = 0.78,P = 0.465,交互作用不明显。
三因素构成的二级交互作用:
A×B×C:基础液(BASE)×血清种类(SERO)×血清浓度(PCT)
F = 6.75,P = 0.003,交互作用明显。
(略)
第三节 Multivarite过程
6.3.1 主要功能
调用此过程可进行多元方差分析。此外,对于一元设计,如涉及混合模型的设计、分割设计(又称列区设计)、重复测量设计、嵌套设计、因子与协变量交互效应设计等,此过程均能适用。
6.3.2 实例操作
[例6-3]甲地区为大城市,乙地区为县城,丙地区为农村。某地分别调查了上述三类地区8岁男生三项身体生长发育指标:身高、体重和胸围,数据见下表,问:三类地区之间男生三项身体生长发育指标的差异有无显著性?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27