
第二节 General Factorial过程
6.2.1 主要功能
调用此过程可对完全随机设计资料、配伍设计资料、析因设计资料、正交设计资料等等进行多因素方差分析或协方差分析。
6.2.2 实例操作
[例6-2]下表为三因素析因实验的资料,请用方差分析说明不同基础液与不同血清种类对钩端螺旋体的培养计数的影响。
6.2.2.1 数据准备
激活数据管理窗口,定义变量名:基础液为base,血清种类为sero,血清浓度为pct,钩端螺旋体的培养计数为X,按顺序输入相应数值,建立数据库。
6.2.2.2 统计分析
激活Statistics菜单选ANOVA Models中的General Factorial...项,弹出General Factorial ANOVA对话框(图6.3)。在对话框左侧的变量列表中选变量x,点击O钮使之进入Dependent Variable框;选要控制的分组变量base、sero和pct,点O钮使之进入Factor(s)框中,并分别点击Define Range钮,在弹出的General Factorial ANOVA:Define Range对话框中确定各变量的起止值,本例变量base的起止值为1、3,变量sero的起止值为1、2,变量pct的起止值为1、2。之后点击OK钮即可。
6.2.2.3 结果解释
在结果输出窗口中,系统显示48个观察值进入统计,三个因素按其各自水平共产生12种组合。
分析表明,模型总效应的F值为10.55,P值 < 0.001,说明三因素间存在有交互作用。单因素效应和交互效应导致的组间差别比较结果是:
单因素组间比较:
A:基础液(BASE)
F = 4.98,P = 0.012,说明三种培养基培养钩体的计数有差别;
B:血清种类(SERO)
F = 61.265,P < 0.001,说明两种血清培养钩体的计数有差别;
C:血清浓度(PCT)
F = 3.49,P = 0.070,说明两种血清浓度培养钩体的计数无差别。
两因素构成的一级交互作用:
A×B:基础液(BASE)×血清种类(SERO)
F = 5.16,P = 0.011,交互作用明显;
B×C:血清种类(SERO)×血清浓度(PCT)
F = 15.96,P < 0.001,交互作用明显;
A×C:基础液(BASE)×血清浓度(PCT)
F = 0.78,P = 0.465,交互作用不明显。
三因素构成的二级交互作用:
A×B×C:基础液(BASE)×血清种类(SERO)×血清浓度(PCT)
F = 6.75,P = 0.003,交互作用明显。
(略)
第三节 Multivarite过程
6.3.1 主要功能
调用此过程可进行多元方差分析。此外,对于一元设计,如涉及混合模型的设计、分割设计(又称列区设计)、重复测量设计、嵌套设计、因子与协变量交互效应设计等,此过程均能适用。
6.3.2 实例操作
[例6-3]甲地区为大城市,乙地区为县城,丙地区为农村。某地分别调查了上述三类地区8岁男生三项身体生长发育指标:身高、体重和胸围,数据见下表,问:三类地区之间男生三项身体生长发育指标的差异有无显著性?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28