
夯实营销基础:大数据观察消费者行为_数据分析师考试
如今的市场营销手段已经和过去完全不同了,广告主对营销媒介渠道和营销手段的认知、选择也发生了翻天覆地的变化。
在这个毫无疑问是史上最纷乱嘈杂的大时代里,消费者的行为不再是单纯的接受,而是更加自主,这样的关系模式导致了品牌不能依靠强制来获得关注,而要以更具渗透性的方式进行传播,这也势必要求更透彻的“Consumer Insight”即消费者洞察。
说到如何深刻了解消费者,目前的确有几种主流的洞察方式,除了传统的市场调研之外,还有基于Cookie数据的洞察,以及基于搜索行为数据的洞察,每一种消费者洞察手段有各自的适应场景。
传统的市场调查研究对消费者进行统计分析和研究的历史悠久,手段也相应成熟,能够清晰的定义被访者的年龄、性别、职业、收入等各方面特征,按照人口属性和产品行为属性维度进行综合分析,标签和维度很多,可以形成具象的典型用户画像。
尤其是网络市场调研打破了线下调研的瓶颈,节省大量调查费用和人力,缩短信息反馈周期,在选定的地区内,获取相对庞大的样本数量。但对于用户具体行为轨迹、特定时间段数据的收集,市场调研仍有一定困难。
并且,问卷调查的表达形式、提问的顺序、答案的方式与方法都是已经设计好的,调研只是基于问题的资料收集,因此,调查问卷主体内容设计的水平,将直接影响整体调查结果的价值。
不成熟的大数据洞察
大数据时代的来临,让消费者洞察有了进一步发展的可能,数据的捕获、存储、解读和利用可以提供各种尺度上的深刻见解。不用设计问卷,大数据能在不可取样的环境、打破“无时限取样”的限制。过往洞察手段做不到的,大数据可以做到;给不出的,大数据可以给。
但有不少基于Cookie数据得出的洞察报告,通过分析数据库内每一个Cookie的网页浏览记录,找到用户的兴趣关注点,但因其数据量、过期时间、数据覆盖范围等因素,只能做较简单的数据分析,无法深度还原,很难捕捉到用户在一定时期内的准确需求。
搜索巨头们提供的基于消费者搜索行为数据的洞察也是大数据洞察的一种,搜索平台拥有庞大的用户行为数据,实时洞察消费者需求,集成数据,进行结构化分析,的确也可以做出一定程度的洞察。
但是搜索行为数据给出的洞察报告仅仅是基于特定区域内,或者局限于某特定搜索引擎的特点,掌握的是部分网络用户的部分网络行为,可以帮助企业看清楚有搜索行为这一块区域上人们的行为方式,但是无法知晓这部分人的后续动作是什么。哪些人有购买行为,哪些没有,两者有什么关系?单靠搜索行为数据,无法给出这些问题的答案。
大数据洞察的理想状态
大数据的真正价值不在于它的大,而在于它的全——空间维度上的多角度、多层次信息的交叉复现;时间维度上的与人或社会有机体的活动相关联的信息的持续呈现。
大数据不是为了任何一个应用产生的,大数据分析客观要求我们根据不同的目标,使用统计、数学模型,从多层次的数据库中抽取数据,在数据和数据的关联和聚类分析中,寻找出有价值的信息。
只要合理使用,这些庞大、多维度的数据,能够在任何地方、从任何角度以趋势图表等通俗易懂、科学合理的形式呈现出来。用以分析的数据越全面,分析的结果就越接近真实,意味着企业越能够从这些新的数据中获取更敏锐的洞察力,并将其与已知业务的各个细节相融合。
如果有能够掌握大数据标准、入口、汇集和整合过程的公司,能够获取全部网络用户和全部网络服务提供商的全部网络行为,跨网站、跨产品、跨终端、跨平台地驾驭大数据,在此基础上产生的数据洞察,无疑将为广告主带来全新的价值体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04