
大数据治理水污染真正做到物联网物尽其_数据分析师考试
我国水资源总量丰富,居世界第6位,但人均量偏少,为世界人均的1/4,且分布极为不均匀,呈现出南多北少,东多西少的特点。长江流域及其以南地区国土面积只占全国的36.5%,其水资源量占全国的81%;淮河流域及其以北地区的国土面积占全国的63.5%,其水资源量仅占全国水资源总量的19%。同时,中国水源污染严重,旱涝灾害频繁。
水行业信息化也面临着重重挑战。随着我国水资源管理和水环境保护问题的日益突出,需要收集与处理的水利、水务与水环境信息资源越来越多,对信息的准确性和实时性要求越来越高,但信息的规范化和标准化工作相对滞后,加上系统的维护管理渠道始终未能得到很好地解决,致使我国在水利、水务与水环境信息资源的开发利用、共享和信息服务方面,与国际先进水平有一定差距。同时,水利、水务与水环境信息系统整体性规划的不完善或实施不利而导致各个系统兼容性差,信息流不畅,致使信息化的大量投入形成了一个个“信息孤岛”和一条条“信息鸿沟”。
国家对水利、水务与水环境行业发展非常重视,继2011年中央一号文件《中共中央国务院关于加快水利改革发展的决定》明确了推进水利信息化建设的指导方针,并于2011年7月宣布未来10年投资4万亿元于水利建设之后,2015年4月16日,国务院又正式发布了《水污染防治行动计划》,也就是业界俗称的《水十条》,标志着我国水利、水务与水环境领域信息化建设将进入持续的高峰阶段。
水利领域,经过若干年的信息化基础建设与探索,下一步进行基础资源整合,尽量复用IT基础设施,避免一套系统单独配置软硬件环境的问题,未来大部分业务系统运行在以物联网应用为基础的大数据分析与云计算平台之上已是必然趋势。在水务与水环境领域,结合国家水生态文明城市建设规划和地方特点,并随着智慧城市建设的深化,地方政府也开始关注以城市水安全(包括水质,城市防涝,供排水等)为中心的创新建设,以此为代表的就是城市水务综合管理和智慧管网等以物联网为基础的业务系统的建设。
另一方面,随着信息技术发展水平的提升,居民对用水安全和便利性的期望也更高。如何利用先进的物联网及云计算、移动技术打破“信息孤岛”,形成数据联动,然后通过大数据分析为水利、水务与水环境的开发、建设、保护提供决策信息,成为水行业信息化发展的重要方向。
北大环境学院E20联合研究院副院长薛涛认为:“中国面临着严重的水资源问题。国务院发布的《水污染防治行动计划》提出了我国水资源防治保护的纲领性规划,将有效推进工业、城镇生活、农业农村、船舶港口污染防治,节约保护我国有限的水资源。水行业应有效应用物联网、云计算和大数据等先进技术,通过科学监控和管理实现水资源的可持续利用,促进环境产业升级与转型。”
物联网正在把我们所居住的世界数字化,产生的海量数据与新的云服务交付模式让企业的业务能实现新的价值创造。通过大数据分析产生洞察,物联网产生的海量数据才有价值。大数据分析将赋予物联网真正的力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25