
大数据治理水污染真正做到物联网物尽其_数据分析师考试
我国水资源总量丰富,居世界第6位,但人均量偏少,为世界人均的1/4,且分布极为不均匀,呈现出南多北少,东多西少的特点。长江流域及其以南地区国土面积只占全国的36.5%,其水资源量占全国的81%;淮河流域及其以北地区的国土面积占全国的63.5%,其水资源量仅占全国水资源总量的19%。同时,中国水源污染严重,旱涝灾害频繁。
水行业信息化也面临着重重挑战。随着我国水资源管理和水环境保护问题的日益突出,需要收集与处理的水利、水务与水环境信息资源越来越多,对信息的准确性和实时性要求越来越高,但信息的规范化和标准化工作相对滞后,加上系统的维护管理渠道始终未能得到很好地解决,致使我国在水利、水务与水环境信息资源的开发利用、共享和信息服务方面,与国际先进水平有一定差距。同时,水利、水务与水环境信息系统整体性规划的不完善或实施不利而导致各个系统兼容性差,信息流不畅,致使信息化的大量投入形成了一个个“信息孤岛”和一条条“信息鸿沟”。
国家对水利、水务与水环境行业发展非常重视,继2011年中央一号文件《中共中央国务院关于加快水利改革发展的决定》明确了推进水利信息化建设的指导方针,并于2011年7月宣布未来10年投资4万亿元于水利建设之后,2015年4月16日,国务院又正式发布了《水污染防治行动计划》,也就是业界俗称的《水十条》,标志着我国水利、水务与水环境领域信息化建设将进入持续的高峰阶段。
水利领域,经过若干年的信息化基础建设与探索,下一步进行基础资源整合,尽量复用IT基础设施,避免一套系统单独配置软硬件环境的问题,未来大部分业务系统运行在以物联网应用为基础的大数据分析与云计算平台之上已是必然趋势。在水务与水环境领域,结合国家水生态文明城市建设规划和地方特点,并随着智慧城市建设的深化,地方政府也开始关注以城市水安全(包括水质,城市防涝,供排水等)为中心的创新建设,以此为代表的就是城市水务综合管理和智慧管网等以物联网为基础的业务系统的建设。
另一方面,随着信息技术发展水平的提升,居民对用水安全和便利性的期望也更高。如何利用先进的物联网及云计算、移动技术打破“信息孤岛”,形成数据联动,然后通过大数据分析为水利、水务与水环境的开发、建设、保护提供决策信息,成为水行业信息化发展的重要方向。
北大环境学院E20联合研究院副院长薛涛认为:“中国面临着严重的水资源问题。国务院发布的《水污染防治行动计划》提出了我国水资源防治保护的纲领性规划,将有效推进工业、城镇生活、农业农村、船舶港口污染防治,节约保护我国有限的水资源。水行业应有效应用物联网、云计算和大数据等先进技术,通过科学监控和管理实现水资源的可持续利用,促进环境产业升级与转型。”
物联网正在把我们所居住的世界数字化,产生的海量数据与新的云服务交付模式让企业的业务能实现新的价值创造。通过大数据分析产生洞察,物联网产生的海量数据才有价值。大数据分析将赋予物联网真正的力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14