京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据治理水污染真正做到物联网物尽其_数据分析师考试
我国水资源总量丰富,居世界第6位,但人均量偏少,为世界人均的1/4,且分布极为不均匀,呈现出南多北少,东多西少的特点。长江流域及其以南地区国土面积只占全国的36.5%,其水资源量占全国的81%;淮河流域及其以北地区的国土面积占全国的63.5%,其水资源量仅占全国水资源总量的19%。同时,中国水源污染严重,旱涝灾害频繁。
水行业信息化也面临着重重挑战。随着我国水资源管理和水环境保护问题的日益突出,需要收集与处理的水利、水务与水环境信息资源越来越多,对信息的准确性和实时性要求越来越高,但信息的规范化和标准化工作相对滞后,加上系统的维护管理渠道始终未能得到很好地解决,致使我国在水利、水务与水环境信息资源的开发利用、共享和信息服务方面,与国际先进水平有一定差距。同时,水利、水务与水环境信息系统整体性规划的不完善或实施不利而导致各个系统兼容性差,信息流不畅,致使信息化的大量投入形成了一个个“信息孤岛”和一条条“信息鸿沟”。
国家对水利、水务与水环境行业发展非常重视,继2011年中央一号文件《中共中央国务院关于加快水利改革发展的决定》明确了推进水利信息化建设的指导方针,并于2011年7月宣布未来10年投资4万亿元于水利建设之后,2015年4月16日,国务院又正式发布了《水污染防治行动计划》,也就是业界俗称的《水十条》,标志着我国水利、水务与水环境领域信息化建设将进入持续的高峰阶段。
水利领域,经过若干年的信息化基础建设与探索,下一步进行基础资源整合,尽量复用IT基础设施,避免一套系统单独配置软硬件环境的问题,未来大部分业务系统运行在以物联网应用为基础的大数据分析与云计算平台之上已是必然趋势。在水务与水环境领域,结合国家水生态文明城市建设规划和地方特点,并随着智慧城市建设的深化,地方政府也开始关注以城市水安全(包括水质,城市防涝,供排水等)为中心的创新建设,以此为代表的就是城市水务综合管理和智慧管网等以物联网为基础的业务系统的建设。
另一方面,随着信息技术发展水平的提升,居民对用水安全和便利性的期望也更高。如何利用先进的物联网及云计算、移动技术打破“信息孤岛”,形成数据联动,然后通过大数据分析为水利、水务与水环境的开发、建设、保护提供决策信息,成为水行业信息化发展的重要方向。
北大环境学院E20联合研究院副院长薛涛认为:“中国面临着严重的水资源问题。国务院发布的《水污染防治行动计划》提出了我国水资源防治保护的纲领性规划,将有效推进工业、城镇生活、农业农村、船舶港口污染防治,节约保护我国有限的水资源。水行业应有效应用物联网、云计算和大数据等先进技术,通过科学监控和管理实现水资源的可持续利用,促进环境产业升级与转型。”
物联网正在把我们所居住的世界数字化,产生的海量数据与新的云服务交付模式让企业的业务能实现新的价值创造。通过大数据分析产生洞察,物联网产生的海量数据才有价值。大数据分析将赋予物联网真正的力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12