
SPSS问卷加权处理:是偏心吗_数据分析师考试
调查问卷数据分析中经常遇到对数据进行加权的问题,什么是加权?沈浩老师博客中这样描述:让一些人变得比另一些人更重要!那为什么要加权?为了让调查数据在特征的分布上更接近实际情况。比如在会员数据中,男女比例是6:4,而调查问卷的比例是7:3,为了使调查结果更贴近真实,首先需要对问卷进行加权处理,让问卷的分布结构跟实际分布保持一致。
从概念上,加权:通过对总体中的各个样本设置不同的数值系数(即加权因子-权重),使样本呈现希望的相对重要性程度。通俗一些的公式:设计加权=某个变量或指标的期望比例/该变量或指标的实际比例。
看一个SPSS文件加权案例:
有一家数码产品专营店,它有一大批忠实的会员经常购买。为了更好的经营好自己即将要开设的网店,在会员中进行了一次购买习惯的问卷调查。在问卷的校验过程中,他们发现回收的问卷在人口特征的分布上与实际情况不符,会员中男女比例是6:4,而问卷中是7:3,并且男女会员实际在教育水平(1、2、3、4个档)的占比均为2:2:4:2。考虑到这两个因素可能对分析结果有较大的影响,现在需要对问卷数据进行加权处理,使得加权后的性别和教育水平能够符合实际比例。
1、汇总问卷数据,计算加权的权重
SPSS本身具有过硬的数据汇总功能,利用这些功能能够快速准确的对原始问卷数据进行大范围的汇总,主要在于获知不同男女性别在不同教育水平的人数,和参与问卷的总人数,然后根据“权重=变量的会员比例/该变量问卷比例”来计算最终的权重(本案例用这个公式)。
熟悉excel电子表格的话,也可以利用excel的透视表功能快速对问卷数据进行汇总并计算权重,这里略过。
表格的“会员比例”即男女会员在教育水平的占比2:2:4:2,男性0.6,女性0.4。最后一列即根据公式计算而得到的“权重”。
2、将权重数据合并到原始问卷数据中
这个步骤充分显示了SPSS合并数据文件的能力,SPSS合并数据有两种,一种是增加记录,另外一种是增加变量,我们现在需要把“权重”变量合并到原始问卷数据文件中,而且要求是和不同性别不同教育水平向匹配及对应的操作。
说得直白一点,其实相当于excel的vlookup功能,此时发现,spss的合并数据比vlookup更条件化,简单易于操作。这两种方法没有必要过多对比,你熟悉哪种选择哪种。最后的效果是:
3、SPSS加权个案,将“权重”作为频率变量
选择“数据”菜单最后一项“加权个案”,按照弹出的菜单提出来操作,点击确定后,加权处理则持续存在于接下来的各种分析操作中,如果不想使用加权处理,则必须取消加权,这一点需格外注意。
4、加权与不加权,我们来做一个比较
首先,我们看不加权时的问卷数据:
参与调查的男女比例大概是7:3,与实际会员比例6:4不符,教育程度的比例也不符合2:2:4:2。
接下来看加权处理后的效果:
此时,经过加权处理对样本进行校正均衡,使得调查数据在分布上完全和会员实际分布相符,达到分析的目的,基于这样一个靠近实际情况的数据然后再进行分析,其各项结论也更趋向于接近实际状况。
记住一点:加权也是篡改数据的方法!谨慎使用!
如果数据有“加权”,我们要明确地告诉客户:
为什么加权?
加权方案的实施过程;
加权对数据的影响,等等;
通常,我们应该:在数据报告过程中,在图表上同时标明“未加权”和“加权”的基数;在分析报告可灵活处理,但也应有清晰的、一致的标注;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15