京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用分析 在企业发展占据重要地位_数据分析师考试
目前从国内情况来看,除了一些明星和科技狂人外,普通消费者在住宅设计时并未通盘考虑整体运用智能家居控制系统,人们的消费观念仍然未能有效形成,但智能家居作为一个新生行业,目前正处于大规模兴起的起点,市场消费观念也正在逐步形成过程中,随着智能家居市场推广普及的进一步落实,培育起消费者的使用习惯,同时科技进步以及更大规模厂商介入将推动行业成本的下降,智能家居市场潜力将是巨大的,行业前景光明。在这大好前景背后,是数以万计的数据集合。
2014年,google完成了对智能家居设备提供商nestlabs的收购,收购金额竟然高达令人咋舌的32亿美金。仅有两款智能设备的nestlabs在google这里为何值32亿美金?一方面是由于智能家居行业前景可期,nestlabs在智能家居领域是一个消费级产品,利于google未来布局,另一方面是google看中了nestlabs设备背后的数据、信息收集能力,通过收购,nestlabs设备收集到的数据将成为Google的又一大数据源,帮助Google更好地了解人们的生活。
事实上,大数据并不只是google这样的互联网科技巨头所在意的,物联网技术得到迅速发展后,智能家居企业更是喜欢强调大数据。在几年前,将大数据服务作为一个发展方向并不让人信服,如今看来却十分有远见,那么智能家居企业缘何喜欢强调大数据?
何为大数据?大数据,Bigdata,又称巨量数据、海量数据,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。大数据不仅强调数据量的无限巨大、数据类型的十分多样,而且强调数据处理的难度高、数据所蕴藏的价值高。高德纳咨询公司于2012年修改了对大数据的定义:“大数据是大量、高速、及或多变的信息资产,它需要新型的处理方式去促成更强的决策能力、洞察力与优化处理。”
随着信息处理技术的发展以及大数据被越来越多的提及,大数据时代越来越近。早在2012年,《纽约时报》的一篇专栏中就写到,大数据时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。如今,大数据逐渐开始应用于多个领域,包括医疗、能源、通信、零售业、公共服务、社会学等,而与智能家居相关的物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
在今年的世界杯上,德国队凭借出色的发挥最终捧得大力神杯,而这背后就有大数据的力量。世界杯打响前,德国足协便与SAP巴西分公司合作推出SAPMatchInsights足球解决方案。实际上就是通过数据处理系统对球员跑动、传球等数据的捕捉和分析,为教练团队评估每场比赛的主要状况和每个球员的特点提供更为精准的依据,从而优化球队的训练方法和战术,最终提高球队战绩。这种对大数据的处理和应用帮助德国队在世界杯开始的第一场比赛便以4比0的大比分横扫劲敌葡萄牙。
大数据的影响远不止这些。近日,全球著名的咨询公司埃哲森(Accenture)联合通用电气共同发起了一项调查,内容主要围绕大数据分析以及物联网应用的拓展对于整个行业竞争格局的变革将起到什么样的作用。调查结果表明,“有87%的企业主相信在未来三年内大数据分析将会彻底改变其所在行业的竞争格局,有89%的受访者相信尚未启动大数据战略的企业将在明年内面临市场份额丢失以及竞争力降低的风险”,并且“有73%的企业计划将自身IT支出总额的20%以上投入到大数据分析方面,有超过20%的企业表示他们投入在相同领域的资金占比达到30%以上”。可见,大数据在企业未来发展中将占有更为重要的地位。
回到与大数据关系也十分密切的智能家居领域。一方面,物联网智能家居将会产生比互联网更多的数据。“物联网智能家居涉及智能照明、智能开关、智能电器、智能传感、智能安保、智能健康等等。这些设备数量在1个现代家庭中平均达到50-100个,现代家庭中人员一般为2-3人,移动设备数量一般为2-3部。”而这每一个设备都将在应用过程中都为产生大量的数据。
据估计,到2020年一个中国普通家庭一年产生的数据相当于半个国家图书馆的信息储量。另一方面,物联网智能家居是大数据应用的方向。智能家居的“智”是以对数据的处理和分析为基础的,也就是说没有对数据的精准处理,智能家居的设备至多停留于自动化的阶段,难以实现智能家居真正的智能。这其中离开云技术,但更离不开“原材料”——大数据。
大数据在智能家居的地位和作用是不言而喻的,但大数据也并非完美无缺。虽然不少智能家居企业都在宣扬大数据,但实际的技术能力有限,特别是数据的精准性和安全性。精准性得不到解决,智能家居设备的智能化将大打折扣;安全性没有保障,智能家居用户家庭的隐私可能受到威胁。因而,大数据虽然在未来智能家居的发展中扮演着重要角色,但真正能利用好大数据的路还远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29