
大数据要牢记的5大经验教训_数据分析师考试
1、 要赢得利益相关者的信任
大数据正确的分析方法是业务而不是技术,在开始部署大数据应用之前,赢得业务部门的信任,增强其信息至关重要。首先,利益相关者会帮助你获取所 需要的资源,包括团队、资金和必要的数据资源,让你的项目取得成功。其次,任何数据分析只有被付诸实践才是有效的。如果主要管理者不愿意基于大数据分析结 果对业务进行改进,那么所有的投入都会被浪费。
因此,增强利益相关者的信心将是当务之急。
2、专注于那些对于企业至关重要的问题
对于很多大的机构或者企业而言,如果能够进行数据归档并进行离线,采用几乎免费的集群数据库将会带来巨大的成本节省,这是非常普遍的。
如果能够对非结构化数据进行迁移,将会帮助企业节省大量的购买授权的成本,而部署和管理这样的系统,就需要投入进行系统架构,而所节省的授权成本恰好可以用于系统架构的开销。
在这种情况下,给中型企业的建议就是不要更多关注投资回报率,不要过多关注成本节省。获得最大的商业利益,是需要集中重点加以阐述的口头禅。
3、培养数据科学家
要将大数据应用付诸实践,对于人才的需求首当其冲。对于拥有大量资源的大机构这尚且是一个难题,对于中等企业就更是如此了。众多的市场研究表明,对于人才的需求难以在短时间内解决。与其花重金招聘,莫不如内部挖潜。
可以挑选那些充满了激情的数据库管理人员(DBA)已经愿意学习的业务分析人员,采取适合步骤对他们进行培养。
4、正确采用本机分析技术
拥有一个企业级大数据处理平台并不意味着企业具有驾驭意义数据的能力,拥有处理大数据集群是一件非常好的事情,但问题在于你是否能够以正确方式来确保能够获预期的商业价值呢?
尽管拥有高端大数据平台,但许多企业发现还是很难获取和分析数据。鉴于大数据已经成为整个IT业热点,因此市场上会有各种产品和方案供应商,但这些产品解决方案的效果还有待观察。
5、协作是口头禅
企业业务部门领导、销售主管以及职能部门人,如果缺乏必要的IT知识将很难认同大数据分析的结果。很快就可以发现,尽管具有前所未有的创新,然而相关人员不敢将其付诸应用。
中等企业通过协调IT和业务线,这会帮助克服可能碰到的路障、避免那些妨碍成功的陷阱。通过这种方式,不仅可以帮助企业适当管理好数据,同时也 可以确保能够在正确时间获取到正确的数据。 数据分析具有至关重要的价值,这些数据贵在发现,并证明有效,这将有助于企业进行正确的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16