
语义分析解锁大数据封印_数据分析师考试
已经不再是一个革命性的概念。在银行、保险公司和其他一些金融机构,数据在优化用户服务、精准风险预测、驱动利润增长、保持行为规范等方面发挥着越来越重要的作用。
大多数的组织机构正在认识到,在现今瞬息万变的交易市场上制定战略性的数据驱动型商务策略,对于保持竞争性和可持续性是至关重要的。事实上,凯捷公司研究表明北美90%的金融机构认为成功的数据方案将定义未来的成功者。
虽然很多企业意识到需将数据整合到商务决策中,但不少企业并不清楚了解如何基于数据制定决策。单就金融领域持续生成的数据来说,就包含了交易数据、用户数据、市场数据、管理数据等持续生成数据。这些信息的容量非常惊人,有些组织甚至都找不到合适的工具来分析这些数据。
语义技术应运而生。在最高层次上,语义分析可以给出结构数据和非结构数据的意义,并使其可以操作。因此解决了金融机构挖掘数据价值时面临的重大挑战。
语义分析的核心是图形数据库,也称为“triplestores”(三重存储)。“triplestores”由三元组或以主谓宾格式存储的信息片段构成。例如“美国银行是企业”或者“吉姆是人”。通过这种方式,三元组可以用来描述任何事情,并可以推断人物、空间、机构和其他实体之间的关系。
在金融服务的三个方面,语义技术有深远的影响。
用户体验NGDATA研究显示,42%的美国消费者将用户服务作为选择银行的最重要的因素,然而只有20%的被调查者认为他们所选择的银行充分了解他们的需求和偏好。
当我们考虑所有消费者信息来源时,不难发现将全部数据整合到标准格式得到完整的图表并基于图表进行决策是多么的困难。提取、转化和加载(ETL)这些传统的工艺都是昂贵的资本消耗和时间消耗,这些传统工具往往并不能分析非关系型数据。
但是,语义技术可以通过将包含人口统计信息、事务数据,网络数据、呼叫中心记录、重大生活事件、社交媒体数据等数据在内的用户信息快速和轻松的整合而解决这个问题。这样,银行就可以对其顾客有更全面的了解,准确知道用户的偏好,满足他们的需求。
众所周知,收益的增加来自于现有客户。通过更彻底了解用户偏好,银行不仅可以深化用户忠诚度,还可以提供更加个性化、关联化的用户服务,更好的预测和建议产品与服务,提高收益。
对内部交易、洗钱、身份盗窃和其他一些金融欺诈来说,语义分析将在识别和预防方面发挥重大作用。语义技术讲新闻、官方文件、电话记录、电子邮件等进行综合考虑,发现和推断人物、组织和事件之间的联系。
一个典型的案例是针对内部交易的。语义分析可以加速、简化调查过程。调查者可以通过语义分析观察上市公司在合并、重组、接管等重大事件宣布前的交易情况,结合电话记录或邮件记录甄别交易者和其他各方的通信情况。相同的语义技术也可以用来识别欺诈、壳公司或发现类似于腐败和洗钱等的不法行为。
简化操作金融服务的报告结构和规范是被高度管制的,组织机构必须持有清晰的历史记录。
语义技术可以建议标准的行业模型使得所有的金融机构都可以映射数据。这个模型叫做金融行业业务本体(FIBO),被企业数据管理委员会定义为定义术语、事件、金融合约之间关系的“通用语言”标准。
FIBO 提供了清晰明确的方法来定义企业法人之间复杂的关系,协助使全球金融交易系统透明化。此外,该本体简化了规范和管理报告,使得业务使用者能够更好的服务自身。
固步自封的金融公司会被淹没在数据的海洋里。创新的金融公司会转向语义技术,通过该技术探索数据信息,解密数据价值,并为商务决策提供更好支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16