
大数据时代的知识挑战_数据分析考试
首先是如何界定知识?传统观念认为,知识存在于书本、学术期刊、博物馆和图书馆里,也存在个人的大脑里。而温伯格认为,在互联网时代,知识是无定形的,是混沌的,是悬而未决的,具有巨大的深度和宽度,也是无法确定其边界的,这个观点无疑具有颠覆性。他认为,在互联网时代,人类的知识面临危机,人类所掌握的知识并不可靠,人类设计的完美理论和理论的实际缺陷之间有着很大的差距,“所有确定性都被连根拔起,话题再无边界,没有人对任何事情能达成一致”。当知识具有了网络化的属性并呈现一个开放系统的时候,意味着大众也可以拥有某种智慧,这时,真正有知识、有智慧的并不是某个专家、某个群体,而是互联网本身,互联网变成了一个超级大脑,知识的提升和变化将会永无止境,导致每个人都面对一个大到无限量的信息世界。同时,知识的网络化也对人的思考带来一些根本性的变化,“如果书籍告诉我们,知识是从A到Z的漫长旅程,那么网络化的知识可能会告诉我们,世界并非是一个逻辑严密的论证,而更像是一个无定型的、相互交织的、不可掌控的大网。”
其次是观念挑战,我们需要以新的观念思考传统。比如书籍,作者认为,传统书籍只是一个封闭的系统、单向的媒介,作者在写作时既要和自己对话,也要和读者对话,这种自言自语容易把思想固定在纸上,导致知识的封闭、思想的固化和流动的困难,任何卓越的历史学家都不可能描述出历史的千姿百态,面对“流动性更强、连通性更高、互动性更好”的互联网都会产生巨大的挫败感。传统的纸质书籍在出版后就完成了,它们是作者思想的过去时,不像互联网的知识对话,开放自由,不断发展。
由于网络的开放性有别于专家著作的自言自语和私密性,任何专家为了维护自己的学术地位进行的自私和专断的行为都会遭遇质疑和反对,知识更新会不断加快,不再有中央权威,不再有观点的垄断,所谓“专家”就像鱼缸里的鱼,面对无边的互联网带来的知识大海会显得局促和尴尬,也就是说,大数据时代,真正的专家是互联网,因为他是一个“超级大脑”。
再其次,如何面对大数据时代的信息挑战。由于互联网带来的联通效应,整个世界越来越一体化,每个人似乎都是这个“超级大脑”的一部分,每个人都在制造“知识信息”,也在制造“垃圾信息”,而过量的信息带来的信息超载,超过我们的“信息容道”,会损害我们思考的能力,同时也带来一些诸如信息焦虑等心理症状。那么,面对信息海啸、信息烟雾,教育者如何应对?我认为,知识是有上下游之分的,就如河流的上下游一样,下游水量大,但浑浊;上游水小,却清澈。所谓“学习”就是由河流的下游向河流的上游行走的过程。
知识并不是掌握得越多越好,而是要学会加工处理提纯,教育原理告诉我们,过多的信息数据容易堵塞心灵通道,导致思考能力的瘫痪甚至丧失。我们的教育过于重视知识传授而轻视思考能力,也就是信息处理能力,这就使“选择”和“思考”能力显得尤为重要。
说到底,知识没有边界,用无边的知识填充有限的人生,本身就是一种危险和不自量力的做法,如何在大数据时代学会选择信息,有效利用信息,而不是简单地限制学生接触互联网信息,这才是我们教育者应该思考的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07