京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“四步走”玩转大数据营销_数据分析师考试
在互联网上有条关于大数据的段子:大数据相当于青少年谈性,每个人都在谈论,但没有人知道怎么做,又以为大家都在做,所以只好宣称自己也在做。虽然犀利,但很契合当下大家对于大数据的认知。2014年,是大数据必须“接地气”的时候了!而根据学者分析,营销最有可能成为大数据应用在今年的突破口,率先“落地开花”,因为现在所说的跟互联网相关的大数据,以受众和内容的关系为主。也就是说,现阶段大数据研究,重点在于与营销理论和诉求的关联。
百度迁徙:为商家绘出“藏宝图”
刚过去的春节,让人见识到百度这个亿级数据库借助“春运”这个全球最大规模的人类迁徙活动发挥出的巨大能量。当“迁徙大军”遇到了互联网大数据,百度迁徙根据每个人每一次位置的改变,把旅途中的焦急等待变成了可实时监控的动态数据。全国最热的迁徙路线是哪里?迁入北京的头名城市是哪里?迁出北京的人们都去哪儿了?
这些在以往只能根据铁道部售票数量和区间站选择才能得到粗略统计的春运的核心信息,在百度大数据那里,成了像小葱拌豆腐一样简单获取甚至自动生成的数据分析报告。由于春节的缘故,在此期间发生的食品、礼品采购行为与这些数据息息相关,这便为商家提供了极其精确的信息。从这个意义上讲,百度迁徙大数据在为商家绘制一幅“藏宝图”。
玉兰油25岁装:传统巨头的数据思维
仅仅提取了春运期间的部分数据,就已经撬起了春节这个巨大的商机。但你所看到的,只是冰山一角。目前,百度与宝洁、可口可乐这些全球顶级品牌巨头的合作已经取得了较好的成果。
拿宝洁玉兰油产品为例,百度在帮助其进行受众分析时发现,很多消费者对玉兰油产品的年龄定位比较模糊,不同地域对品牌的关注点、兴趣点有明显不同。为此,双方开放各自优势资源,着眼于深度研究用户行为大数据,帮助宝洁进行“品牌探针”、“消费者画像”分析,找到TA的地域分布、兴趣爱好、媒体接触点等背后隐藏的信息。
具体而言,关于玉兰油的大数据品牌认知分三步:第一、以搜索行为数据为基础提取消费者洞察;第二、以ROI为导向,探讨网络媒体投放甚至全媒体整合投放效果评估体系;第三、整合百度全平台数据,深度挖掘,灵活聚合,还原网络消费者 360度“全相”。通过消费者分析和画像,百度对玉兰油购买人群进行了年龄、地域分析,发现玉兰油的关注人群对玉兰油适用人群认知混乱,由此玉兰油调整营销策略,特别推出了一款标注适合25岁女性使用的产品,结果热销。
关键时刻:企业大数据营销四步走
追本溯源,百度大数据营销是以消费者需求为中心、通过捕捉消费者访问行为中的“关键时刻”来构建营销分析模型的一套方法论体系。而这套方法论与整合营销之父唐•舒尔茨的“SIVA”理论高度契合。上个世纪90年代,舒尔茨提出了SIVA理论,强调客户购买产品或服务的四个关键要素S、I、V、A。Solutions—消费者寻求解决问题的方案、Information—消费者寻找与解决方案相关的信息、Values—消费者衡量各种解决方案的价值、Access—消费者解决问题的入口。
作为互联网第一入口,百度完整记录了SIVA的全过程,能够深刻洞察消费者需求。无论是迁徙地图为商家带来巨大商机,还是宝洁玉兰油这个由百度亲自“接生”的婴儿,都在活生生的诠释百度“关键时刻”这一营销方法论。首先,百度可以帮助品牌了解消费者希望获得的问题解决方案;其次,百度将丰富的品牌信息展现给消费者;再次,百度能够提供竞品信息使消费者可以比较其价值所在;最后,告诉消费者在哪凭借什么手段可以获得解决问题的方法。综上所述,“百度MOMENTS”着重探讨影响消费者行为的关键时刻,而这些关键时刻正是蕴含在SIVA所提到的不同决策阶段中。百度不仅可以帮助品牌捕捉这些关键时刻,还能够提供相应的产品,让品牌与消费者实时地沟通和对话,建立起紧密的联系。
目前,百度与可口可乐、百事可乐、恒大冰泉等正在展开深入合作,通过大数据,为他们提供整合式、精准化的互联网营销方案。同时,与传统企业巨头在互联网营销领域的合作,将为行业树立新的标杆,也将为其他企业的互联网转型指明道路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30