
11315企业征信:大数据来袭,你准备好了吗
“大数据”这个词近两年很火。但大数据到底是什么?它的价值又在哪里?很多人却并不太了解。
大数据的最大价值在于数据的再利用。数据如果发挥作用,首先要全面,其次要真实。如果大量全面而真实的数据汇集到一起,则会爆发出极大的价值。
比如,一家企业产品质量不合格,这数据本来只是停留在质检部门的网站上。但如果可以再利用,则会产生新的价值。征信机构可以通过依法采集企业的这类信息,去加工形成企业信用档案,供大众查询。目前,一些征信机构已经在这么做了,比如11315全国企业征信系统。
大数据具体到个人亦然。
前段时间在网上看了一篇文章。一名顾客打电话预订海鲜比萨,结果客服告诉他,海鲜比萨并不适合他,因为“根据您的医疗记录,你的血压和胆固醇都偏高。”客服为之推荐的是一种低脂健康比萨,因为顾客上星期一在中央图书馆借了一本《低脂健康食谱》。客服告知顾客,不可以刷卡,因为“您的信用卡已经刷爆了,您现在还欠银行4807元,而且还不包括房贷利息。”客服建议顾客直接带现金来店取比萨,因为根据定位系统,“您正在解放路东段华联商场右侧骑着一辆摩托车。”
故事虽然有些极端,但却道出了大数据的本质:数据的整合和再利用。
当然,这个故事目前还不太现实。目前我们的很多信息掌握在政府各级职能部门手中,虽然《政府信息公开条例》已于2008年正式实施,但目前离政府信息完全公开依然有很大的距离。此外,即使所有的信息都依法公开,这里面还涉及到个人隐私的问题。哪些应该公开?哪些不该公开?目前并无明确的法律规定。
此外,大数据所包含的内容要远甚于此。对于个人来讲,政府各级职能部门的信息及医院、移动通讯公司等企事业单位的信息还不足以展现大数据的价值。社交工具的价值也应得到体现。
试想一下,将来如果所有的信息均对外公开,并且经过处理和加工,形成了大数据效应,那生活会是怎样?
求职时被拒。因为“你之前所在的公司对你有负面评价,觉得你工作态度有问题。你在QQ空间和微信朋友圈里发布了很多针对前公司的负面评价,这些评价可能真实,但如此对待老东家,这样的品行我们不喜欢。”
处对象时被拒,因为“社交工具中发布的负面情绪过多,为人情绪化,不靠谱。同时医疗系统显示,你前段时间刚做了一个心脏搭桥手术,身体健康让人怀疑。此外,根据定位系统,你多次在三里屯和后海等地驻足,经常泡吧的人,我不喜欢。”
买车上保险时,被要求提高保费。因为“导航系统显示,你在开车时经常存在超速、急刹车和急转弯的情况。而且交警部门公示的信息显示,你曾因酒驾而被扣12分。”
去饭店就餐时,不再由自己点餐,而改由专职营养师推荐,因为你的医疗记录已经公开。营养师会根据你的身体情况为你推荐最适合你的菜品。
去超市买菜时,导购会直接将你引到你想要的蔬菜面前。因为你之前曾多次在这家超市买菜,他们分析了你的买菜记录后,已经得出了你的喜好。
在网上买东西时,系统会根据你之前的购买记录和浏览记录,自动地为你推荐商品(现在也有系统推荐,但做得还很不好)。通过短信或其它方式,发送到你的手机。你只需稍加回复,便可坐等产品上门,而不需要再次登录购物网站。
去医院看病时,医生会额外地给你开些补充维生素的药,因为社交工具上你发表图文的时间经常在凌点之后。
去一个陌生的地方出差,手机系统会自动提示你,你有一个高中同学正在这个城市,尽管你们已经有很多年没联系。系统还会告诉你该同学的上班地点和居住地点。因为定位系统显示你这个同学工作日每天早上都从一个地点出发,9点左右总会到达另一个相同的地点。在经过分析后,系统得知,之前的地点便是其居住地点,后来的地点便是其工作地点。系统会根据你所在酒店的位置,为你提供最佳的出行方案,打车还是坐公交,还有什么时候见面最合适。同时会将该同学的公司名称及工作岗位告知你,让你提前熟知,免得你俩见面聊天时尴尬。
……
也就是说,大数据的价值在于整合所有的数据,使之产生聚合效应。大数据有效打通了信息壁垒,让我们不再面对一个不熟悉的世界。
这是一个趋势。任何人无法躲避。我们所做的,就是迎接它。
将来,我们的隐私注定会频繁地与大数据产生碰撞。这也是大数据时代发展过程中注定也遭遇到的。如何解决这个问题,需要的不只是技术,更是法制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23