
大数据统计告诉你 暴跌中的股民在忙什么_数据分析师考试
2015年的这次A股暴跌与之前的的区别是什么?除了暴跌的幅度、持续时长均超过历史同期以外,还有一点也很重要:那就是操作的媒介发生了变化。在01年的大跌中,大部分股民还是在证券大厅中紧盯股票走势。07年的大跌中,PC端股票网站及软件已经逐渐普及,而在现在,移动端的证券内应用则成为了主要的炒股工具。
正因如此,移动端的大数据也精确的记录下了每一个股灾中的股民的真实行为。由TalkingData移动数据研究中心出具的一组数据,为我们留下了这些珍贵的记录。
1.股市波动越剧烈,证券APP越活跃
伴随近期股市的大幅震荡,证券类应用用户活跃度也出现波动,每逢沪指大幅下跌或重大利好政策出台次日,证券类应用的用户活跃次数均出现显著增长。
证券类应用用户活跃度
可以看到,在央行和证监会公布利好之后的第一个开市日,股票APP均会有较大的活跃增长(例如6月29日、7月6日)。此外,剧烈的波动也会影响股民的活跃度,例如在7月1日,沪指大跌5.23%之后,第二天的股票APP的活跃程度就达到近段时间的峰值。
2.股民选择的证券应用不同,但心理状况和应用习惯近似。
各证券类应用的日活跃用户量的变化也与股市在工作日与周末的开市规律一致,并随近期股市震荡出现相应波动。
应用活跃度
图中,应用活跃度从上至下排序分别为:同花顺、大智慧、东方财富通、涨乐财付通和自选股。可以看到,无论用户使用哪家的证券类应用,趋势增长幅度都是类似的。但用户较多的同花顺与大智慧,在一些重大时间点上,用户活跃程度会产生更大的波动。
3.早晨、开盘时和晚间消息公布时为证券类应用的活跃高峰期
在看过了周期分析之后,我们来看看单日分析。
证券类应用的活跃高峰期
6月29日,经历了前一周周五的股市重挫与周末的降准利好消息,用户对周一股市开盘的走势高度关注,证券类应用的活跃度也在股市一开盘便抵达高峰。
从整体局势上看,在开盘前的7点钟(也是许多股民起床的时间)即开始活跃度激增。这不仅仅是因为暴跌中的股民已经养成了起床后关注证券类应用的习惯,也因为6月29日是央行降息后的第一个开市日,因此多数股民会对股票走势产生更高的期待。
9点开盘之后,证券应用的活跃度迅速增长在1小时内达到最高点。甚至在中午收盘,证券应用的活跃度仍没有明显的减少。这体现出股民在中午休市期间的股票查询及操作仍然很频繁。下午随着股指继续振荡,证券类应用的活跃度持续维持在高水平,一直到闭市。
在收盘之后,证券应用的活跃度开始逐渐下降。但晚上十九点活跃度又提升。这说明《基本养老保险基金投资管理办法》公开征询意见等消息出台,使得高度敏感的股民在利好消息出现后立即打开证券应用,筹划明天的操作。
4.看盘交易类应用活跃高峰为开盘时间,资讯社交类应用活跃高峰为早晨、收盘后与晚间。
7月2日,沪指高开低收,证券类应用用户活跃度也呈现上午增长后下午持续低迷的特点,与看盘交易类的同花顺、大智慧等不同;注重资讯社交功能的雪球;在收盘后及晚间的用户活跃度较盘间时段更高。
证券类应用用户活跃度
具体而言,7点应用高峰时段,活跃度最高的是雪球。而在上午和下午开盘时期,则是自选股和涨乐财付通及其他看盘操作类应用的活跃期。但看盘操作类应用在收盘后活跃度便开始下降,而雪球则走势更为平稳。最终在晚上21点,随着晚间利好消息的出台,由于股民需要对消息进行及时的讨论、分析,因而注重社交的雪球的活跃度再次上升达到一天第二个顶点。
5.股票走势与股民活跃度成正向关系。
7月6日,在经历了周末证监会暂缓IPO与要求券商增持的利好消息后,市场情绪振奋,开盘证券应用出现活跃度高峰,下午沪指一路走低收盘前出现反弹,证券应用用户活跃度也在收盘前出现小高峰。
上证走势图与应用活跃走势图
将上证走势图与应用活跃走势图两相对比可以看出,大盘走势与证券应用的活跃程度出现的正向相关关系。7月6日早上9点,随着沪指高开7.82%,开盘后证券类应用活跃度迅速达到全天峰值.但随着股市之后逐渐下跌振荡,股民的活跃度开始减退。但在14:30后大盘走势尾部突然拉升,使得股民的注意力重新集中起来,证券应用的活跃度也开始上升。
6.不同地域城市均用股票应用,安卓设备中三星、华为和小米最多。
证券应用用户的地域
从证券应用用户的地域来看,证券类应用已经在一、二、三线城市同时普及开来,因此一、二、三线城市的股民分配非常平均。甚至一线城市的城市股民的证券应用还要少于二线及三线以下城市,仅占25.6%。而三线城市的反而占比最多,占39.5%。
而另外一方面,如果从安卓用户的手机来看,约七成是三星、华为和小米用户。其中30.8%的用户使用三星手机,比例为安卓手机品牌最高。华为和小米是第二梯队,均为20%左右。此后则是魅族(4.4%)、酷派(3.4%)、OPPO(2.8%)、联想(2.2%)和HTC(2.0%)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14