
别说忙,没工夫看书。。。你那刷FB/朋友圈的工夫腾出来,保证每周啃下一本”,小编身边总充斥着这样的‘训话’。。。
额,奈何我每天的工作离不开从社交媒体中获取信息,甭管有毒没毒,一得空就扎进SNS已经成了我的‘条件反射’。其实病入膏肓的又何止我一人;据了解,全球互联网用户平均每天花在社交媒体上的时间足足有两个半钟头!点击、翻页、评论、分享……这些行为的集合,勾勒着虚拟世界中每一个鲜活的个体 —— 那是每个人的一面镜子。
你知道么,每当科技分析师煞有介事地探讨‘大数据’,10个里有9个说的都是‘社交网络’中流出的用户行为数据。不由分说,今天的社交大佬们有个‘杀很大’的机会:可以更好地理解用户的人脉关系、兴趣爱好、消费习惯以及人口统计特征。如果真能玩儿转这些数据,介些巨无霸SNS就能为用户提供无比贴合的个性化内容,以及无与伦比的综合体验,同时,广告商们还能更精准地定位到那些真正对他们产品感冒的用户。到那会儿,赚钱的赚钱,享受的享受,每个人就都High了。
小编今天为大家粗数一下,世界上最大的几个社交网络各握有哪些要命的用户数据?它们的意义何在?
先说说‘图谱’是神马?字典里说,这俩字泛指按类编制的图集,其实英文就是Graph。社交网络发展至今,中国专家很喜欢用‘图谱’形容不同SNS掌握的不同类别的庞大数据网络;听上去颇为高大上不说,还跟‘大数据’与生俱来的‘难以驾驭性’有点相得益彰的效果。呵呵,不好意思,小编只能解释到这儿了。。。
Facebook的兴趣图谱:月活跃用户超过12亿,这些人平均每月花7个小时在Facebook上。以往,人们总把Facebook上的数据宝库看成一个‘社交图谱’,或者说一个关系管理体系。你的家人,朋友,同事,认识的人,想认识的人、甚至是想回避的人……全在上面;Facebook握有你最完整的的关系图。但是成年后的Facebook又有另一番面貌,它现在平均每天处理25亿条内容分享(大概每人两条),它的like(点赞)按钮每天被按下超过27亿次…….专家们更倾向于把今天的Facebook看成一个‘兴趣图谱’;它告诉你某某某在意的是什么,是一个通向人们喜好的窗口。
Google+的知识图谱:你可以把Google+看成是Google搜索的补充和延伸,它能告诉你:人们‘已经知道些啥’,以及‘想要知道些啥’。Google+的NB之处在于,它令Google宝贵的搜索数据更具‘人性’,帮助Google理解人们为啥搜索这个或者内个信息,背景、情由各是什么等等。此外,反过来看,Google+也是Google搜索的一个有力助手:+1键(连同其他G+数据)已经成为决定Google搜索结果中网页排名的重要因素。http://cda.pinggu.org/
Youtube的娱乐图谱:大伙儿喜欢看什么片子?听什么曲子?每个人感兴趣的音乐、视频、电影、电视节目都是哪些?Youtube将每个人的欣赏品味汇编成了一个庞大的娱乐图谱。从电影制片厂,到唱片公司,再到有线电视台,娱乐产业中的重头参与者们都在目不转睛地盯着这个指南针。每个月,超过10亿个独立用户会造访Youtube,使它成为名符其实的世界第二大社交媒体。2013年12月的数据显示,Youtube用户平均每月花费6个小时在这个平台上观看视频(而Facebook用户平均每月在其平台的视频观看时间还不足1小时)。
LinkedIn的职业图谱:LinkedIn掌握的价值数据在于每个人的工作经历和职业人脉;注意,这里说的‘每个人’指的是:全世界的白领劳动力。LinkedIn是社交网络中为数不多的常青树和盈利明星;它针对的不是人们的‘一时兴起’,而是逃不掉的‘生计’问题(个人的求职、公司的招聘)。目前,大约有22%的LinkedIn用户在该平台上拥有500-999个一度人脉,拥有301-499个一度人脉的占了19%。
Twitter的新闻图谱:握有2.32亿月活跃用户,Twitter的用户数在社交媒体中算不得最大的,但它却是最最繁华的‘话题枢纽’。这只蓝色小鸟不知疲倦地向人们展示:此时此刻,在世界的每个角落,大家都在‘叽叽喳喳’些什么。今天的记者用Twitter来发现和分享突发新闻,有线电视台拿它来衡量用户对某某电视节目的反响。每天的5亿条推文为新闻和要闻提供了一个最接近于‘实时’的窗口。据Pew的研究数据,Twitter美国用户中有52%把该平台当做主要的新闻获取渠道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07