
别说忙,没工夫看书。。。你那刷FB/朋友圈的工夫腾出来,保证每周啃下一本”,小编身边总充斥着这样的‘训话’。。。
额,奈何我每天的工作离不开从社交媒体中获取信息,甭管有毒没毒,一得空就扎进SNS已经成了我的‘条件反射’。其实病入膏肓的又何止我一人;据了解,全球互联网用户平均每天花在社交媒体上的时间足足有两个半钟头!点击、翻页、评论、分享……这些行为的集合,勾勒着虚拟世界中每一个鲜活的个体 —— 那是每个人的一面镜子。
你知道么,每当科技分析师煞有介事地探讨‘大数据’,10个里有9个说的都是‘社交网络’中流出的用户行为数据。不由分说,今天的社交大佬们有个‘杀很大’的机会:可以更好地理解用户的人脉关系、兴趣爱好、消费习惯以及人口统计特征。如果真能玩儿转这些数据,介些巨无霸SNS就能为用户提供无比贴合的个性化内容,以及无与伦比的综合体验,同时,广告商们还能更精准地定位到那些真正对他们产品感冒的用户。到那会儿,赚钱的赚钱,享受的享受,每个人就都High了。
小编今天为大家粗数一下,世界上最大的几个社交网络各握有哪些要命的用户数据?它们的意义何在?
先说说‘图谱’是神马?字典里说,这俩字泛指按类编制的图集,其实英文就是Graph。社交网络发展至今,中国专家很喜欢用‘图谱’形容不同SNS掌握的不同类别的庞大数据网络;听上去颇为高大上不说,还跟‘大数据’与生俱来的‘难以驾驭性’有点相得益彰的效果。呵呵,不好意思,小编只能解释到这儿了。。。
Facebook的兴趣图谱:月活跃用户超过12亿,这些人平均每月花7个小时在Facebook上。以往,人们总把Facebook上的数据宝库看成一个‘社交图谱’,或者说一个关系管理体系。你的家人,朋友,同事,认识的人,想认识的人、甚至是想回避的人……全在上面;Facebook握有你最完整的的关系图。但是成年后的Facebook又有另一番面貌,它现在平均每天处理25亿条内容分享(大概每人两条),它的like(点赞)按钮每天被按下超过27亿次…….专家们更倾向于把今天的Facebook看成一个‘兴趣图谱’;它告诉你某某某在意的是什么,是一个通向人们喜好的窗口。
Google+的知识图谱:你可以把Google+看成是Google搜索的补充和延伸,它能告诉你:人们‘已经知道些啥’,以及‘想要知道些啥’。Google+的NB之处在于,它令Google宝贵的搜索数据更具‘人性’,帮助Google理解人们为啥搜索这个或者内个信息,背景、情由各是什么等等。此外,反过来看,Google+也是Google搜索的一个有力助手:+1键(连同其他G+数据)已经成为决定Google搜索结果中网页排名的重要因素。http://cda.pinggu.org/
Youtube的娱乐图谱:大伙儿喜欢看什么片子?听什么曲子?每个人感兴趣的音乐、视频、电影、电视节目都是哪些?Youtube将每个人的欣赏品味汇编成了一个庞大的娱乐图谱。从电影制片厂,到唱片公司,再到有线电视台,娱乐产业中的重头参与者们都在目不转睛地盯着这个指南针。每个月,超过10亿个独立用户会造访Youtube,使它成为名符其实的世界第二大社交媒体。2013年12月的数据显示,Youtube用户平均每月花费6个小时在这个平台上观看视频(而Facebook用户平均每月在其平台的视频观看时间还不足1小时)。
LinkedIn的职业图谱:LinkedIn掌握的价值数据在于每个人的工作经历和职业人脉;注意,这里说的‘每个人’指的是:全世界的白领劳动力。LinkedIn是社交网络中为数不多的常青树和盈利明星;它针对的不是人们的‘一时兴起’,而是逃不掉的‘生计’问题(个人的求职、公司的招聘)。目前,大约有22%的LinkedIn用户在该平台上拥有500-999个一度人脉,拥有301-499个一度人脉的占了19%。
Twitter的新闻图谱:握有2.32亿月活跃用户,Twitter的用户数在社交媒体中算不得最大的,但它却是最最繁华的‘话题枢纽’。这只蓝色小鸟不知疲倦地向人们展示:此时此刻,在世界的每个角落,大家都在‘叽叽喳喳’些什么。今天的记者用Twitter来发现和分享突发新闻,有线电视台拿它来衡量用户对某某电视节目的反响。每天的5亿条推文为新闻和要闻提供了一个最接近于‘实时’的窗口。据Pew的研究数据,Twitter美国用户中有52%把该平台当做主要的新闻获取渠道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18