
美国金融银行业的大数据算法:随机森林模型+综合模型
大数据的概念这两年非常火,对它的解读也是见仁见智。其实不管大数据也好,还是数据挖掘,或者机器智能,都只是个名词,代表了最先进的计算机数据存储和分析算法。它们的核心都是通过在看似变化莫测的数据中寻找规律来帮助解决实际问题,尤其是对未来的一些精准到个体的预测。比如如何最有效的寻找新客户,提高对现有客户的交叉销售以及防止客户流失,都是大数据的具有普遍性的典型应用。具体到银行业,就涉及到信用审批,额度确定,以及反欺诈等专业的应用。
我所就职的美国运通公司是全球知名的信用卡企业,道琼斯三十种工业股票之一。大数据技术被广泛应用于公司的各个部门,取得了令人瞩目的效果。公司的客户群信用非常好,坏账率只有1-2%,远远低于同行业中的其他企业。反欺诈也做得相当成功,在每年八千亿美元的刷卡量中仅造成一个亿左右的损失,占总量的约0.02%。此外公司通过细致分析持卡人的消费记录,并结合移动互联网,实时向用户推荐商家信息,进一步增加了公司的营收和客户忠诚度。
要做到这些好的业绩,仅靠个人经验和一些简单的规定是远远不够的,而必须依靠专业人员采用最先进和有效的数据挖掘算法。下面我就谈谈其中一些最主要的方法,希望对国内的同行能有所借鉴。
回归分析是数据挖掘中最常见和基本的算法,包括简单线性回归,逻辑回归以及其他的广义线性或非线性模型。它们在过去虽然被广泛使用,但存在明显的不足,尤其是变量的相互依存性会使结果发生偏差。为避免这些问题,近些年来美国银行业大量采用了树形算法家族。这其中包括决策树,聚类和回归树,以及较为复杂的随机森林模型。这些方法避免了变量间的相互依存性问题,而且预测分析能力也逐步增强。不过随机森林模型的复杂性使得结果有时不容易理解,新近出现的梯度递增树算法,在预测能力和可理解性方面都强于随机森林,而且适用的范围广,在反欺诈和其他一些领域被证明效果非常好,很值得业内人士关注。
除了树形算法以外,关联分析和序列分析也是最近比较热门的算法。关联分析的核心是寻找与一个客户相关的其他人,通过他们的行为来预测这个客户。序列分析则是通过跟踪一个客户在一段时间内的多个行为来寻找规律,判断他下一步可能的动作。这些算法虽然概念易懂,实际操作起来并不那么简单,需要相当一段时间的实践摸索。如果模型建得好,往往可以有事半功倍的效果。其他的著名算法还很多,比如支持向量模型,深度神经网络等等,这里就不再一一而足了。
算法这么多,自然就存在如何选择的问题,或者也可以同时使用多个算法,然后让他们投票决定结果,这种思路最近也很流行,称为综合模型算法。另外如何选择变量和进行变换,如何验证模型的正确性,和如何及时更新以防模型失效也都很有讲究,必须每一步都认真仔细进行才能产生令人满意的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08