
大数据助力消费决策_数据分析师考试
大数据助力消费决策落到酒店行业里面来,我们要探讨的就是如何利用大数据帮助消费者来挑酒店。
消费者挑酒店这个任务是非常重要的一个事情,不管对于OTA这种平台,对于某种渠道也好,平台和渠道能够变现,最核心的任务就是让消费者能够通过自己的平台产生这样一些交易。要产生交易,首先要让消费者找到自己想要的酒店。这是最重要的任务。
这个事情现在来看,说简单也简单,在互联网这样一个时代,跟20年前相比,这个事情越来越简单。20年前我们消费者订一千公里之外的酒店怎么办?只能通过当地的朋友做这个决定,给自己推荐,现在我们有各种各样的OTA,所有的平台把酒店的信息搬到互联网上,开放给消费者,这时候消费者做这样的决定,在信息的层面上不存在获取的问题。
在20年前,难的地方有两点,对消费者来讲,他想要合适的酒店,自己心里酒店的标准是什么样,没有标准。但信息的膨胀,带来我们在信息层面上所谓的垃圾,对和错的,真的假的,甚至还有大量的没有结构的内容,这些东西对于消费者来讲,不能讲是杂乱无章,但是需要花很大的时间成本和代价通过这些信息找到自己的需求。今天跟大家探讨就是如何用大数据这样一个工具来解决消费者在信息获取和需求满足上的匹配。
我先跟大家介绍一下慧评网做的事情,慧评网本身是一个在酒店行业的大数据分析,我们目前的客户是酒店和酒店集团,我们为各种平台和渠道提供服务,在酒店和酒店集团里面,我用李总讲的一句话,阿里虽然有天猫有淘宝,但阿里是一个大数据的集团。大数据在其他行业数据也会越来越重要,酒店行业商户们可能会缺少数据的制造和数据的加工分析能力,慧评网就是试图帮助酒店们实现自己数据化的运营,有各种平台和渠道上的数据对接。
讲到酒店的数据,笼统来讲,可以分成三个不同方面,住前数据、住中数据和住后数据。难点在第三方面,对体验和分享的数据,大部分都是无结构的文本数据,它很难直接去使用和前两个部分打通,慧评网有自己的独门秘笈,我们这时候可以把整个结构化数据从住前到住后打通,形成对酒店所有经营的服务,包括服务于酒店市场部门,电子商务部门的口碑的模块,同时也有服务于酒店价格分析和价格监控的模块。
所以我们现在的服务客户对象,包括中国,我记得5月份,接近3000家酒店的消费客户。现在这个数字已经接近四千了。我们也逐渐接入了几十家的平台,比如像360、高德。
怎么样让消费者选择适合自己的酒店,不一定最贵,但一定是最适合自己的。对于在线来讲,消费者目前怎样挑选酒店。我们通过OTA,我们基本上通过一些最核心的搜索模块,包括城市、日期等等。得到大量的酒店后,我们做选择,选择依赖于信息,不存在没有信息的选择。这里面所有的信息对传统的消费者来讲,我们要基于我的位置,我想去哪里,我想承受多大价格范围内的东西,这些酒店有哪些是不合格,或者不够满足自己的价值观点的。我们仔细看的话会发现在每一个信息上都足够去做出一些有趣的事情。像基于位置,把这个重要性放大,行程会很有特色。他需要对每个酒店去进行浏览,通过数据来看,更多关心可能是酒店的图片,还有大量的酒店的评论。这些形成用户选酒店整个逻辑,初选、筛选和精选,最后选择最喜欢的酒店。
我们发现有一些信息很难用,大家在挑酒店过程中怎么定义这个过程,在我的一个使用的理念,刚刚所有五大块的信息,前面三块相对来讲好一点,我们只需要界定一个范围,后两个是挨个去看的,图片稍微好看一点,毕竟五颜六色的,最难用的信息是点评。
这样一个酒店的点评,看它的评论一大的英文非常难读,后面的评论可能没有意义的。它有两个难点,数以上千的点评怎么判断哪个酒店最适合自己。第一个耗时,第二个是误导。
咱们回忆一下慧评网的小伙伴有一个比较擅长的独门秘笈,我们有顾客观点的搜索引擎,把用户对观点的判断抽取出来,形成观点数据库,这就可以帮助消费者解决耗时和误导这种弊病了。
携程的这个点评,用户在里面表达很多的信息点,它表达对位置的一些判断,表达对周边的噪音环境的判断,也表达了对酒店的网络信号和电话信号的判断都在这里面,当我们把观点转化成一个结构化的数据,这里面包括很多好的内容,比如说交通,周边景区,周边环境,也包括差的环境,包括房间隔音,手机信号。抽取出来后,我们做的事情很简单,我们试图让计算机帮用户看点评,形成一个可以让用户最直接去判断这家酒店的好坏,是否适合自己,对于这样的聚合,一千条点评的聚合可以判断这家的手机信号是否满足消费者的需求。
这时候我们聚合起来,形成相应的数据服务模块,像酒店名片这样的模块,把酒店经常提及的特色内容展现出来,归纳成酒店的睡眠舒适程度,满意程度如何,还有这家酒店,消费者普遍认为隔音好,被褥不错,床上用品舒适特定的一些点。
对于普通消费者来讲,如果不愿意花力气,可以这样得到酒店的基本判断,看这个点是不是适合我的。
通过这样的聚合,利用群体的智慧,就能够一定程度上帮助消费者替代他们阅读上千条评论,形成最直观对酒店的判断。就可以避免耗时,被误导。
利用这样的信息我们可以改善的是什么,改善消费者真正到的一家酒店,想判断这家酒店是不是适合自己,通过一眼可以看到结果的展示方法,降低误导和成本。更大的价值在哪,我们要提前,不能够让它变成消费者自己脑袋里面有一个需求,带着这个需求去看这个酒店,其实消费者的需求是永远不能被满足的。
我们需要把整个用户需求离散化,变成搜索,我们基于用户的需求,进行搜索直接满足用户他的需求的酒店推荐。这有一张爸爸去哪的图,有很多案例,每个案例被我们定义成用户需求的场景,对每个场景用户有各种需求,跟差旅不一样,一个爸爸带孩子去旅游的时候,去杭州旅行的话,肯定考虑孩子的特点,基于这个孩子的特点有没有更好的用词,这样的需求在现在整个搜索过程中很难被实现,因为你没有办法,我找到好一点的需求,例如OTA。
用户知道自己要什么,去杭州,关键词在西湖,在西湖边上,用户对它的用词,水太混了等等。
我们可以延伸出完全内容搜索的技术,内容搜索本身是大搜索引擎的发展方向,这也是我们将传统搜索引擎的传统科技引入咱们酒店的尝试,完全可以把用户的需求纳入到搜索的条件,通过需求分析,定义出来用户对用词有一个高要求的定义,不是有无,而是好坏。在好坏的层面上,构建出一系列的语义网络,形成网格相关性的判断。通过语义搜索的结果,推荐出最适合他的酒店,第一个带孩子的客人评价度最高,第二对游泳池在干净程度,水温程度最高的,还有去西湖方便程度最高的。
这样打造成一个黑盒子,是大数据结合语义网的技术,可能产生新的东西。
讲到大数据满足搜索,在整个电子商务消费领域,满足这种搜索,有另外一条途径,是传统的精准配件,更多利用大数据相关性的原理,去判断自己相识人群的购物历史,去选择他爱好的产品和酒店。它会判断用户需求的本身,来满足用户的需求,这是因果的推荐。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14