京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据”时代来临 CIO你准备好了么_数据分析师考试
未来的十年将是一个“大数据”引领的智慧科技的时代。随着社交网络的逐渐成熟,移动带宽迅速提升,云计算、物联网应用更加丰富。更多的传感设备、移动终端接入到网络,由此产生的数据及增长速度将比历史上的任何时期都要多,都要快。“大数据”时代的脚步悄然而至。
请试想一下:当40亿部手机、10亿部电脑,随时随地都在向分布在全球各地的服务器发送数据;当你开着车对着“语音助手”说:“我要在附近找一家最罗曼蒂克的餐厅。”之后,短短一两秒就能得到您满意的答案时。其背后向您提供服务所涉及到的定位、资料检索、存取、数据交换等一系列动作是何等的复杂。而这一系列动作正是由“大数据”所支撑,正如IBM总结的那样:“大量化(Volume)、多样化(Variety)和快速化(Velocity)”就是“大数据”的显著特征。大量、多样、快速给现在的IT业提出了巨大挑战。当今的网络环境、存储以及搜索架构越来越不适应这种新的变化。而大数据的到来将促使这些领域产生新的变革。为了让业界对大数据的价值和应用有更好的认识,将于4月17、18日在北京国家会议中心举行第四届CCS云计算高峰论坛暨展览将汇集业内知名的领导企业和政企IT主管,多角度、深入探讨大中国大数据产业。以下三点为本次大会讨论部分重点点:
问题一:网络架构不适应“大数据”时代
传统的网络架构已经不能满足现代网络应用需求。传统的网络结构设计是以客户端向服务器发出请求,由服务器应答返回结果给客户的垂直结构。而在大数据时代,这种垂直结构的服务请求将变得越来越少,取而代之的是水平结构的横向请求服务。“大数据”时代,大量的数据都存储在分布广泛、不同地域、各种类型的服务器中。当用户发出一个搜索或查询请求时,最多的运算是服务器之间的信息交换,最后将结果返回给用户。新一代网络架构要适应Web2.0时代的水平服务应用。
问题二:数据中心将面临巨大压力
“大数据”时代对数据中心的访问量是前所未有的。更多的网络设备将同时访问数据中心,这包括智能手机、平板电脑、台式机、笔记本、甚至正在马路上行驶的汽车。此时,数据中心面临的压力将是难以想象的。正如铁道部去年年底推出的在线订票系统,采用的系统不可谓是当今最先进的系统,但当有几亿人同时访问的时候,网站所有服务都陷入了瘫痪。这是所有工程人员难以预料的。“大”到一定程度的时候,任何事情都可能发生。随着全球经济一体化的深入,未来数据中心要面临的不仅是一个中国地区的访问量,而是全球几十亿的访问量。还是那句话:“用户你伤不起。”
问题三:数据仓库架构不适应高速反应的要求
当今数据库里的内容不仅仅是多,而且结构已发生了极大改变,不是以二维表的规范结构存储。大量的数据是非结构化的办公文档、文本、图片、XML、HTML、各类报表、图片和音频/视频等。并且在企业的所有数据中是大量且增长迅速的。企业80%的数据是非结构化或半结构化的,结构化数据仅有20%。并且全球结构化数据增长速度约为32%,而非结构化数据增速高达63%。预计今年非结构化数据占有比例将达到互联网整个数据量的75%以上。面临如此大量的非机构化数据,其移动和修改将耗费大量的人力物力,读取效率也将越来越低。当然这包括了物理存储和逻辑存储软、硬件两个层面。
当然“大数据”时代对IT业各方面的影响都将巨大且意义深远。此次会展不仅从大数据角度剖析对产业界的挑战与机遇,更有分会场《云计算基础架构》、《云应用服务》、《云计算?数据中心》等息息相关的领域,将为现场的专业观众带来全方位的产业观察和案例分享。
同期同地还将举行CENCE中国企业网络通信大会暨展览,包括UC/协作、呼叫中心、多媒体融合通信指挥调度/运营商增值业务及平台等专场的精彩内容。历经十二届的洗礼,CENCE中国企业网络通信大会暨展览已发展成为中国企业网络通信领域的标杆展会。预计会展将吸引约3千名来自运营商、政府部门、金融、电力、能源、医疗、教育、交通、物流、教育、制造业以及上市公司,科研院所中的信息部门主要负责人和企业IT主管以及专家学者等具有行业代表性的相关企事业单位人员参与此次盛会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06