
SAS基于失业率的分析预测_数据分析师考试
失业率(UnemploymentRate)是指失业人口占劳动人口的比率(一定时期全部就业人口中有工作意愿而仍未有工作的劳动力数字),旨在衡量闲置中的劳动产能,是反映一个国家或地区失业状况的主要指标。通过对历年各国和地区的失业率数据 行分析,我们可以对全世界在这几十年的经济波动情况有个大致的了解,同时我们对世界几个大国的失业情况进行了模型拟合,最后我们还探究了中国从改革开放到2010年这30年的失业率的波动与通胀率的关系。
PART ONE——聚类分析
代码如下:
libname ep ‘e:\saslx’;
proc import out=ep.saswork
datafile=”e:\saslx\saswork.xls”
dbms=excel replace;
sheet=”sheet1$”;
getnames=yes;
run;
proc print;
id country;
run;
data s1;
input coun$1-10 year91 year92 year93 year94 year95 year96 year97 year98 year99 year00 year01 year02 year03 year04 year05 year06 year07 year08 year09 year10 ;
datalines;
中国 2.3 2.3 2.6 2.8 2.9 3 3.1 3.1 3.1 3.1 3.6 4 4.3 4.2 4.2 4.1 4.0 4.2 4.3 4.1
中国香港 1.8 2 2 1.9 3.2 2.8 2.2 4.7 6.2 4.9 5.1 7.3 7.9 6.8 5.6 4.8 4.0 3.6 5.2 4.3
中国澳门 3 2.2 2.1 2.5 3.6 4.3 3.2 4.6 6.3 6.8 6.4 6.3 6 4.9 4.1 3.8 3.1 3.0 3.6 2.8
澳大利亚 9.6 10.5 10.7 9.5 8.4 8.3 8.4 7.8 7 6.4 6.8 6.4 5.9 5.5 5 4.8 4.4 4.2 5.6 5.2
奥地利 3.5 3.7 4.3 3.6 3.7 4.1 4.2 4.2 3.8 3.6 3.6 4 4.3 4.9 5.2 4.7 4.4 3.8 4.8 4.4
保加利亚 11.1 15.3 21.4 20 15.7 13.5 13.7 12.2 14.1 16.3 19.4 17.6 13.7 12 10.1 9 6.9 5.6 6.8 10.2
加拿大 10.4 11.3 11.2 10.4 9.5 9.6 9.1 8.3 7.6 6.8 7.2 7.7 7.6 7.2 6.8 6.3 6.0 6.1 8.3 8.0
捷克 4.1 2.6 4.3 4.3 4 3.9 4.8 6.5 8.7 8.8 8.1 7.3 7.8 8.3 7.9 7.1 5.3 4.4 6.7 7.3
丹麦 10.6 11.3 12.4 8 7 6.9 6.1 5.5 5.5 4.6 4.8 4.7 5.5 5.6 5 4.1 4.0 3.4 6.0 7.4
芬兰 6.6 11.6 16.2 16.4 15.2 14.4 12.5 11.3 10.1 9.7 9.1 9.1 9 8.8 8.3 7.7 6.8 6.4 8.2 8.4
法国 9 10 11.1 12.3 11.6 12.1 12.3 11.8 10 8.5 7.8 7.9 8.5 8.9 8.9 8.8 8.0 7.4 9.1 9.3
德国 6.6 7.9 9.5 10.3 10.1 8.8 9.8 9.7 8.8 7.9 7.9 8.7 10 11 11.1 10.3 8.6 7.5 7.7 7.1
希腊 7.7 8.7 9.7 9.6 10 10.3 10.3 10.8 11.9 11.2 10.4 9.9 9.3 10.2 9.6 8.8 8.1 7.2 9.5 12.5
匈牙利 8.5 9.8 11.9 10.7 10.2 9.9 8.7 7.8 7 6.4 5.7 5.8 5.7 6.1 7.2 7.5 7.4 7.8 10.0 11.2
冰岛 2.5 4.3 5.3 5.3 4.9 3.7 3.9 2.7 2 2.3 2.3 3.3 3.4 3.1 2.6 2.9 2.3 3.0 7.2 7.6
爱尔兰 14.7 15.1 15.7 14.7 12.2 11.9 10.3 7.8 5.7 4.3 3.7 4.2 4.4 4.4 4.3 4 4.0 5.2 11.7 13.5
以色列 10.6 11.2 10 7.8 6.9 6.7 7.7 8.5 8.9 8.8 9.4 10.3 10.7 10.4 9 8.4 7.3 6.1 7.6 6.6
意大利 10.9 11.4 9.8 10.7 11.3 11.4 11.5 11.7 11.4 10.5 9.5 9 8.7 8 7.7 6.8 6.1 6.7 7.8 8.4
日本 2.1 2.2 2.5 2.9 3.2 3.4 3.4 4.1 4.7 4.7 5 5.4 5.3 4.7 4.4 4.1 3.9 4.0 5.0 5.1
韩国 2.3 2.4 2.8 2.4 2 2 2.6 6.8 6.3 4.4 4 3.3 3.6 3.7 3.7 3.5 3.2 3.2 3.6 3.7
荷兰 7 5.5 6.2 6.8 7.1 6.6 5.5 4.3 3.6 3.1 2.5 3.1 4 5 5.1 4.2 3.5 3.0 3.4 4.5
新西兰 10.3 10.3 9.5 8.1 6.3 6.1 6.6 7.5 7 6.1 5.4 5.3 4.8 4 3.8 3.8 3.7 4.2 6.1 6.5
挪威 5.5 5.9 6 5.4 4.9 4.8 4 3.2 3.2 3.4 3.6 3.9 4.5 4.5 4.6 3.4 2.5 2.6 3.1 3.5
菲律宾 9 8.6 8.9 8.4 8.4 7.4 7.9 9.8 9.8 11.2 11.1 11.4 11.4 11.8 7.8 8 7.3 7.4 7.5 7.3
波兰 11.8 13.6 14 14.4 13.3 12.3 11.2 10.5 13.9 16.1 18.2 19.9 19.6 19 17.7 13.8 9.6 7.1 8.2 9.6
葡萄牙 4.1 4.1 5.4 6.7 7.1 7.2 6.7 4.9 4.4 3.9 4 5 6.3 6.7 7.6 7.7 8.0 7.6 9.5 10.8
罗马尼亚 3 8.2 10.4 8.2 8 6.7 6 6.3 6.8 7.1 6.6 8.4 7 8 7.2 7.3 6.4 5.8 6.9 7.3
俄罗斯联邦 0.1 5.2 5.9 8.1 9.5 9.7 11.8 13.3 12.6 9.8 8.9 7.9 8 7.8 7.2 7.2 6.1 6.3 8.4 7.5
西班牙 16.4 18.4 22.6 24.1 22.9 22.1 20.6 18.6 15.6 13.9 10.6 11.5 11.5 11 9.2 8.5 8.3 11.3 18.0 20.1
土耳其 8.1 8.3 8.8 8.4 7.5 6.5 6.7 6.8 7.7 6.5 8.4 10.3 10.5 10.3 10.3 9.9 10.3 11.0 14.0 11.9
瑞典 3 5.2 8.2 8 7.7 8 8 6.5 5.6 4.7 4 4 4.9 5.5 6 5.4 6.1 6.2 8.3 8.4
泰国 2.7 1.4 1.5 1.3 1.1 1.1 0.9 3.4 3 2.4 2.6 1.8 1.5 1.5 1.4 1.2 1.2 1.2 1.5 1.0
英国 8.4 9.7 10.3 9.6 8.6 8.2 7.1 6.1 6 5.4 4.9 5 4.8 4.7 4.6 5.4 5.3 5.3 7.5 7.8
美国 6.8 7.5 6.9 6.1 5.6 5.4 4.9 4.5 4.2 4 4.8 5.8 6 5.5 5.1 4.6 4.6 5.8 9.3 9.6
委内瑞拉 9.5 7.7 6.7 8.7 10.3 11.8 11.4 11.2 14.5 13.2 12.8 16.2 16.8 13.9 11.4 9.3 7.5 6.9 7.9 8.5
run;
proc cluster data =s1 method=average pseudo;
id coun;
proc tree;
run;
PST2伪t2值,在G=3和G=1处有峰值,由于最佳分类为它上面一种,故表明它支持4分类和2分类。PSF伪F值,在G=2和G=4处较大,也支持前面的结论。
倘若分为4类,则有
第一类:中国、日本、奥地利、韩国、中国香港、中国澳门、冰岛、荷兰、挪威、泰国、捷克
第二类:澳大利亚、英国、丹麦、新西兰、加拿大、匈牙利、葡萄牙、瑞典、美国、罗马尼亚、芬兰、法国、意大利、希腊、德国、以色列、菲律宾、土耳其、俄罗斯联邦、爱尔兰
第三类:保加利亚、波兰、委内瑞拉
第四类:西班牙
失业率数字被视为一个反映整体经济状况的指标,而它又是每个月最先发表的经济数据,所以失业率指标被称为所有经济指标的“皇冠上的明珠”,它是市场上最为敏感的月度经济指标。
从第一类分析出有许多亚洲国家都分为一类,可见地域差异对于失业率还是有影响,也可以推测同一地域的经济状况相似,因此失业率也比较相近;第一类也参杂了少量欧洲国家。
第二类中全是发达国家,各自的所在大洲也不一样,但是,从失业率也可以反映他们的国家经济情况变化在20年来应该是相近的。
第三类是第二类中未提及的欧洲发达国家与南美洲的一个国家合为一类,这一点上是有些奇怪的。
第四类西班牙独自为一类,观察数据发现,它的失业率一直以来居高不下,推测它可能一直都保持着这种水平,即经济也似乎是不会变动太大的。
proc fastclus data =s1 maxclusters=4 out=fcl;
id coun;
proc sort data=fcl out = sortfcl;
by cluster;
proc print data=sortfcl;
run;
用快速聚类法也得到了同样的分类结果,推测针对这些国家,分为4类确实比较适合。
PART TWO——模型拟合
我们想研究各国的失业率符合什么样的模型,从而根据这个模型可以对失业率进行分析和预测,最后,如果几乎所有的国家的失业率都属于同一种模型,那我们就可以推断这是失业率随着年份的一般发展规律。由于国家众多,所以选取我们感兴趣的一些国家来做。
选取中国作为研究对象。
先通过画图看应该用哪种模型来拟合比较好。为了画图方便,把1991年看作是第一年,1992年看作是第二年,依次类推,2010年看作是第二十年。
从图中可以发现图形大致为S型。采用 logistic模型 。
由图中的结果可以看出,模型拟合的很好,可以大致认为中国的失业率符合logistic模型。可能原因是随着90年年以后教育力度的加强,高素质人才愈来愈多,导致失业率不断上升,但是可能某一段时间的退休人数增加,加上国家的行业变得多样化,企业数量增多,对人才的需求大,阻止了失业率的增长速度,但是还不足以抵消。
下面研究澳大利亚的失业率。
很显然,logistic模型不再满足澳大利亚的失业率变化,试用指数模型拟合一下
发现结果还比较让人满意。由于对澳大利亚的国情不是很了解,不知道为什么他们的失业率会逐年下降,不过可以肯定的是,他们的政府起了很大作用。
再分析一下日本
Logistic模型和指数模型多不再满足,用三角函数来拟合
模型的拟合结果还让人满意。据我所知,日本在六七十年代经历了经济的极端繁荣之后就开始走下坡,特别是到了九十年代末二十一世纪初的时候,各行各业失业的情况十分严重,可能这后经过一系列的经济调整,情况有所转变,但是到了08年,受到全球经济危机的冲击,失业率又上升了。
从以上三个实例可以看出,失业率没有符合某一具体模型,而是根据不同国家的不同情况而有所变化。
PART THREE——中国失业率曲线分析
data china;
input y1980-y2010;
datalines;
4.9 3.8 3.2 2.3 1.9 1.8 2 2 2 2.6 2.5 2.3 2.3 2.6 2.8 2.9 3 3.1 3.1 3.1 3.1 3.6 4 4.3 4.2 4.2 4.1 4.0 4.2 4.3 4.1;
proc transpose out=china(rename=(_name_=year col1=rate));
run;
proc gplot;
plot rate*year;
run;
上图所示为中国从改革开放至今(1980年-2010年)各年的失业率。
单从上图曲线来看,可看出1980年的失业率较高,为4.9%,从1980年到1984年,失业率逐年降低,下降的速率也很快;1984年到1988年失业率呈现平稳波动;1988年到1989年间失业率陡增;1990年到2000年失业率呈现平缓上升的趋势,2000年到2003年,失业率上升的速度加快;2003年到2010年失业率保持平稳波动。
一般情况下,失业率下降,代表整体经济健康发展,利于货币升值;失业率上升,便代表经济发展放缓衰退,不利于货币升值。若将失业率配以同期的通胀指标来分析,则可知当时经济发展是否过热,会否构成加息的压力,或是否需要通过减息以刺激经济的发展。
通货膨胀(Inflation)指在纸币流通条件下,因货币供给大于货币实际需求,也即现实购买力大于产出供给,导致货币贬值,而引起的一段时间内物价持续而普遍地上涨现象。
libname mywork ‘e:\sas\sas作业’;
proc import out=rate
datafile=’e:\SAS\通胀率.xls’
dbms=excel replace;
sheet=’sheet1$’;
getnames=yes;
run;
proc gplot;
plot _col1*_col0;
run;
上图所示为改革开放近30年来的通胀率曲线。
下面我们对通胀率和失业率两个图进行对比分析:
1984年以前失业率的降低与通胀率似乎没有多大关系,我认为这主要是改革开放的新政策极大促进了就业。特殊政策的影响太大了。从1984年以后来分析失业率与通胀率的关系比较合理。
从1984年到2000年,通胀率波动很大,失业率也处于一种波动状态,通胀率开始上升的一年内,失业率有略微下降。通货膨胀对刺激就业的作用是短期的,长期来说这种关系并不成立。而从两个图的对比中,我们也会发现,持续的通货膨胀反而导致失业率上升。在经济学中,有这样一个基本原理:社会面临通货膨胀与失业的短期权衡取舍。大多数经济学家认为在货币注入的短期效应会降低失业率。我们结合2000年到2009年这10年的数据来看,可看出政府在权衡取舍中,并没有选择通过发行过多货币来刺激就业,而是选择了维持较低的通胀率,但这同时这就意味着失业情况无法从货币刺激这个方面得到改善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29