京公网安备 11010802034615号
经营许可证编号:京B2-20210330
警惕“大数据傲慢”(1)_数据分析师考试
我们每天听到“数据”一词的频率突然高起来,如“大数据”、“数据经济”和“政府数据公开”等,“数据”与现代社会、与大家的日常生活越来越息息相关。
从“数字”、“数值”到“数据”
没有计算机和信息技术的年代里,“数据”更多的是“数字”或“数值”,至多也就是用于统计的“数字”或“数值”。计算机问世初期,信息技术有了“数值计算”和“数据处理”的差别,只不过,“数值”通常指连续变化的物理量;而“数据处理”处理的是离散的一组组“数字”而已,“数据”仍然停留在统计应用的水平。
随着计算机和信息技术的普及和发展,互联网的普及特别是移动互联网的普及,“数据”有了更多的内涵和更广外延,“数据”不再限于“数字”或“数值”,只要是计算机可以处理,“数据”可以是文本、语音、图形、图片、视频和更多其他的形式。“金融数据”包括但不限于银行交易、证券交易、外汇牌价和交易、信贷、资信、金融趋势等。“医疗数据”包括但不限于病人症状、检查结论、诊断、用药、流行病、专家就诊时间、医疗资源分布等。“教育数据”包括但不限于适龄学生数、课程计划、成绩、教育质量、升学、就业等等。各种数据,林林总总,不一而足。
曾记得,“数字化”风靡一时。科学家香农在上个世纪40年代就提出了采样定理,即对一个连续函数,按给定间隔提取其值,就可以用一组离散的数字序列代表这个连续函数,这就是数字化的重要基础。“数字化”的另一个意思是“数字化标示”,用一串数字来标示一个客体。“数字化”目标是数字计算机可以处理模拟信号,也可以纪录处理各种客体的“数字化标示”,我们不能不说这是一场技术革命,只不过这个革命是一种工具(计算机)或过程(计算机处理)的革命。“数据”就不同了,“数据”是现在信息社会的一个新生儿,它像石油和矿石,是一种新的原材料,可以用来加工、产生价值;它像农具和机器,是一种新的生产资料,可以提高生产的效率;它像高速路和机场,是一种新的基础设施,投资和利用它可以改善经济和民生。
有创新企业的生产原材料就是“数据”,他们对这样的原材料加工,生产去形形色色的“数据产品”,获得受益,比如:加工过的病案数据对于医药企业,加工过的点评数据对于餐饮企业,加工过的人口流动数据对于规划部门。有些企业很好的利用了“数据”这种生产资料,通过收集分析用户习惯“数据”,可以设计生产出更有人缘的产品,比如:世界知名的互联网公司和手机公司都不断在收集分析用户使用习惯的“数据”,进而改进自己的产品,搜索服务提供商不停收集用户的搜索关键词,借以分析各种有价值的趋势。也有不少地方开始关注对于“数据”基础设施的投入,提高本地区的竞争力,
有企业家说,鼠标嫁给水泥,诞生的宝宝叫数据经济。
“大数据”并不仅仅是因为“数据”量大
“大数据”极大的提升了“数据”一词的使用频率。多大是“大”?
其实历史上“海量数据”被用过很长时间,“海量数据”也是在说“数据”的规模,“大数据”也包含“数据”的规模,不同的是:“大数据”不仅关乎规模,同时还涉及数据的多样性和复杂性,最关键的是用传统的理论和方法都无法高效处理。
曾几何时,人民熟知的数据大小的单位,从位、K(千、10的3次方)、M(百万、10的6次方)、G(十亿、10的9次方)、到了T(兆、10的12次方)、P(千兆、10的15次方)、甚至E(百京、10的18次方)。《经济学人》期刊2010年2月出版的专辑“The data deluge(数据洪流)”中提到数据大小的单位E时,不少专业人士也得上网查查,E到底是多大?
“大数据”与“数据”或“传统数据”有规模上的不同,同时在收集方式上,特别是分析方法上有着根本的差别。搜索服务提供商不停收集用户搜索关键字,用于分析各种趋势;社交网络不停收集聊天主体,分析其中关键字和语义,判断社会大众心情;电商则通过售买数据解读热销产品,这些和“传统数据”或“小数据”的收集方式有明显的差异。“传统数据”的分析方法主要是统计和数据挖掘。“大数据”的加工与“传统数据完全不同”:高度并发的数据采集、数据全集(而非抽样)的处理、数据清洗等预处理,非结构化数据的处理、语义分析、深度学习。正是由于采用了各种新的数据处理方法,“数据”才能成为“大数据”,“数据”才有价值,“数据”才能成为原材料、生产资料、基础设施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14