cda

数字化人才认证

首页 > 行业图谱 >

ML基础:无监督学习之协方差矩阵

ML基础:无监督学习之协方差矩阵
2020-06-16
在翻译sklearn文档 2.无监督学习 部分过程中,发现协方差矩阵几乎贯穿整个章节,但sklearn指导手册把协方差部分放在了这一章节偏后的部分,作为机器学习一个基础概念,在这篇文章中,想把协方差矩阵的相关知识以及 ...

机器学习中的有监督和无监督都包括些什么?

机器学习中的有监督和无监督都包括些什么?
2020-05-29
机器学习算法通常分为有监督的(训练数据有标记答案)和无监督的(可能存在的任何标签均未显示在训练算法中)。有监督的机器学习问题又分为分类(预测非数字答案,例如错过抵押贷款的可能性)和回归(预测 ...

如何正确选择线性回归、逻辑回归、决策等机器学习算法

如何正确选择线性回归、逻辑回归、决策等机器学习算法
2020-05-27
机器学习既是艺术又是科学。但当您查看机器学习算法时,没有一种解决方案或一种适合所有情况的算法。有几个因素会影响您选择哪种机器学习。 有些问题非常具体,需要采取独特的方法。例如,如果您使用推荐系统, ...

机器学习python算法应用,监督学习、无监督学习等!

机器学习python算法应用,监督学习、无监督学习等!
2020-05-25
本系列文章主要介绍机器学习在实践中的应用,介绍利用 python 的生态环境,使用机器学习的算法来解决工程实践中的问题,而不是介绍算法本身。本系列文章参考了《机器学习Python实践》,会通过例子一步一步地引导大 ...

特征向量与特征空间有什么区别?

特征向量与特征空间有什么区别?
2020-05-21
事物的每个属性值,都是在一定范围内变化的,如:修改桌子高度一般在0.5米-1.5米范围内变化,宽度在0.6米-1.5米范围内变化,长度是1米-3米的范围内变化,则由这三个范围限度的一个三维空间就是桌子的特征空间。 ...

有监督学习和无监督学习算法怎么理解?

有监督学习和无监督学习算法怎么理解?
2020-05-19
在判断是有监督学习还是在无监督学习上,我们可以具体是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习。 什么是学习(learning)? 一个成语 ...

一文讲解机器学习算法中的共线性问题

一文讲解机器学习算法中的共线性问题
2020-01-08
作者 | 宋老师 来源 | JSong的数据科学小站 多重共线性是使用线性回归算法时经常要面对的一个问题。在其他算法中,例如决策树和贝叶斯,前者的建模过程是逐步递进,每次拆分只有一个变量参 ...

统计学5个基本概念:统计特征、概率分布、降维、过采样/欠采样、贝叶斯统计方法

统计学5个基本概念:统计特征、概率分布、降维、过采样/欠采样、贝叶斯统计方法
2020-05-18
本文讲述了数据分析师应当了解的五个统计基本概念:统计特征、概率分布、降维、过采样/欠采样、贝叶斯统计方法。 利用统计学,我们可以更深入、更细致地观察数据是如何进行精确组织的,并且基于这种组织结构, ...

人工智能中的线性代数:如何理解并更好地应用它?

人工智能中的线性代数:如何理解并更好地应用它?
2019-12-10
作者 | Oleksii Kharkovyna 编译 | 机器之心 线性代数是 AI 专家必须掌握的知识,这已不再是个秘密。如果不掌握应用数学这个领域,你永远就只能是「门外汉」。当然,学习线性代数道阻且长。 ...

掌握这五大统计学知识,让你在数据科学领域如鱼得水

掌握这五大统计学知识,让你在数据科学领域如鱼得水
2019-10-30
作者 | George Seif 编译 | 廖琴 孙梦琪 来源 | 读芯术 数据科学家都应该知道如何有效地使用数据并从中获取信息。下面是小编整理的五大实用型统计学概念,每个数据科学家都应该熟知, ...

掌握这五大统计学知识,让你在数据科学领域如鱼得水

掌握这五大统计学知识,让你在数据科学领域如鱼得水
2019-10-23
作者 | George Seif 编译 | 廖琴 孙梦琪 来源 | 读芯术 数据科学家都应该知道如何有效地使用数据并从中获取信息。下面是小编整理的五大实用型统计学概念,每个数据科学家都应该熟知, ...

数据科学家不可不知的10种机器学习方法

数据科学家不可不知的10种机器学习方法
2019-09-19
作者 | CDA数据分析师 10 machine learning methods that every data scientist should know 机器学习是研究和工业中的热门话题,新方法一直在发展。该领域的速度和复杂性使得即使对于专家而 ...

第十届CDA认证考试 LEVEL 1 优秀考生访问录:我是如何备考的?

第十届CDA认证考试 LEVEL 1 优秀考生访问录:我是如何备考的?
2019-08-26
第十届CDA数据分析师认证考试,在2019年6月底圆满地落下了帷幕。 今天为大家带来的是,在CDA认证考试 Level 1中取得优异成绩的几位考生,他们来自不同的专业和领域,当中有零基础入门的文科生,海外留学的研究 ...

在CDA学成之后,终于拿到了我的理想offer!

在CDA学成之后,终于拿到了我的理想offer!
2021-12-13
上海57期数据分析就业班学员 姓名:谭同学 毕业院校:湖南大学 专业:软件工程 入职信息:上海某汽车公司,数据分析师,薪资保密,上海 各位同学大家好,很荣幸接到李智老师的邀请,分享一些 ...

深度学习之卷积神经网络经典模型

深度学习之卷积神经网络经典模型
2019-06-18
LeNet-5模型 在CNN的应用中,文字识别系统所用的LeNet-5模型是非常经典的模型。LeNet-5模型是1998年,Yann LeCun教授提出的,它是第一个成功大规模应用在手写数字识别问题的卷积神经网络,在MNIST数据集 ...

数据科学家:那些年,我都学过哪些编程语言......

数据科学家:那些年,我都学过哪些编程语言......
2018-10-25
作者: Elena Nisioti 编译: Mika 本文为 CDA 数据分析师原创作品,转载需授权   我们对事物的看法各不相同,有时他人特别喜欢的 ...

因子模型举例:主成分分析

因子模型举例:主成分分析
2018-08-26
因子模型举例:主成分分析 我之前提到的因子风险主要包括经济的(知利率)、基本面的(如账面市值比率)和技术的(如前期收益率)。获得一个包含大童股票的投资组合因子风险的历史数据,并用于对因子模型进行回测, ...

在实际项目中,如何选择合适的机器学习模型

在实际项目中,如何选择合适的机器学习模型
2018-08-20
在实际项目中,如何选择合适的机器学习模型 在这个文章中,我们主要面向初学者或中级数据分析师,他们对识别和应用机器学习算法都非常感兴趣,但是初学者在面对各种机器学习算法时,都会遇到一个问题是 “在实 ...

R语言vs Python:硬碰硬的数据分析

R语言vs Python:硬碰硬的数据分析
2018-07-31
  R语言vs Python:硬碰硬的数据分析   我们将在已有的数十篇从主观角度对比Python和R的文章中加入自己的观点,但是这篇文章旨在更客观地看待这两门语言。我们会平行使用Python和R分析一个数据集, ...

资源 | 一个Python特征选择工具,助力实现高效机器学习

资源 | 一个Python特征选择工具,助力实现高效机器学习
2018-07-11
资源 | 一个Python特征选择工具,助力实现高效机器学习 鉴于特征选择在机器学习过程中的重要性,数据科学家 William Koehrsen 近日在 GitHub 上公布了一个特征选择器 Python 类,帮助研究者更高效地完成特征选 ...

OK