cda

数字化人才认证

首页 > 行业图谱 >

算法太多挑花眼?教你如何选择正确的机器学习算法

算法太多挑花眼?教你如何选择正确的机器学习算法
2018-07-05
算法太多挑花眼?教你如何选择正确的机器学习算法 机器学习算法虽多,却没有什么普适的解决方案。决策树、随机森林、朴素贝叶斯、深度网络等等等等,是不是有时候觉得挑花了眼呢?福利来啦~本文将教你慧眼识精 ...

一文详解计算机视觉五大技术

一文详解计算机视觉五大技术
2018-05-16
一文详解计算机视觉五大技术 目前,计算机视觉是深度学习领域最热门的研究领域之一。计算机视觉实际上是一个跨领域的交叉学科,包括计算机科学(图形、算法、理论、系统、体系结构),数学(信息检索、机器学习 ...

面试了8家公司,他们问了我这些机器学习题目......

面试了8家公司,他们问了我这些机器学习题目......
2018-05-04
面试了8家公司,他们问了我这些机器学习题目...... 今年年初以来,作者一直在印度找数据科学、机器学习以及深度学习领域的工作。在找工作的这三十四天里,他面试了8到10家公司,其中也包括初创公司、基于服务 ...

入门 | 10个例子带你了解机器学习中的线性代数

入门 | 10个例子带你了解机器学习中的线性代数
2018-05-03
入门 | 10个例子带你了解机器学习中的线性代数 本文介绍了 10 个常见机器学习案例,这些案例需要用线性代数才能得到最好的理解。 线性代数是数学的分支学科,涉及矢量、矩阵和线性变换。 它是机 ...

机器学习中训练样本不均衡问题

机器学习中训练样本不均衡问题
2018-04-03
机器学习中训练样本不均衡问题 在实际中,训练模型用的数据并不是均衡的,在一个多分类问题中,每一类的训练样本并不是一样的,反而是差距很大。比如一类10000,一类500,一类2000等。解决这个问 ...

机器学习的几种主要学习方法

机器学习的几种主要学习方法
2018-04-02
机器学习的几种主要学习方法 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方法。在机器学习领域,有几种主要的学习方法。将算法按照学习方法分类 ...

简述几种人脸识别的主要方法

简述几种人脸识别的主要方法
2018-03-30
简述几种人脸识别的主要方法 人脸识别的方法很多,以下介绍一些主要的人脸识别方法。 (1)几何特征的人脸识别方法 几何特征可以是眼、鼻、嘴等的形状和它们之间的几何关系(如相互之间的距离)。这些算法识 ...

机器学习案例实战-信用卡欺诈检测

机器学习案例实战-信用卡欺诈检测
2018-03-29
机器学习案例实战-信用卡欺诈检测 故事背景:原始数据为个人交易记录,但是考虑数据本身的隐私性,已经对原始数据进行了类似PCA的处理,现在已经把特征数据提取好了,接下来的目的就是如何建立模型使得检测的效 ...

人脸识别中常用的几种分类器

人脸识别中常用的几种分类器
2018-03-28
人脸识别中常用的几种分类器 在人脸识别中有几种常用的分类器,一是最邻近分类器;二是线性分类器 (1)最邻近分类器 最近邻分类器是模式识别领域中最常用的分类方法之一,其直观简单,在通常的应用环境 ...

学会数据分析技能让工作更顺心,Python助你步步高升

学会数据分析技能让工作更顺心,Python助你步步高升
2018-03-24
学会数据分析技能让工作更顺心,Python助你步步高升 Python工具中数据分析常用的包和模块 numpy: 数组、 向量、 矩阵、 数值运算等 scipy: 统计推断、 统计检验等 pandas: 数据读取、 数据整合、 ...

矩阵分解在协同过滤推荐算法中的应用

矩阵分解在协同过滤推荐算法中的应用
2018-03-24
矩阵分解在协同过滤推荐算法中的应用 推荐系统是当下越来越热的一个研究问题,无论在学术界还是在工业界都有很多优秀的人才参与其中。近几年举办的推荐系统比赛更是一次又一次地把推荐系统的研究推向了高潮,比 ...

线性代数在机器学习上的基本应用

线性代数在机器学习上的基本应用
2018-03-22
线性代数在机器学习上的基本应用 本人硕渣一枚,之前研究方向为GPU并行计算。现在开始学习机器学习和深度学习。俗话说好记性不如烂笔头。仅以此记录我的学习过程。 线性代数在机器学习方面有着重要的应用, ...

常用的机器学习&数据挖掘知识点

常用的机器学习&数据挖掘知识点
2018-03-07
常用的机器学习&数据挖掘知识点 Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最 ...

数据预处理--数据降维

数据预处理--数据降维
2018-03-01
数据预处理--数据降维 数据规约产生更小但保持数据完整性的新数据集。在规约后的数据集上进行数据分析和挖掘将更有效率。 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映 ...

【机器学习】确定最佳聚类数目的10种方法

【机器学习】确定最佳聚类数目的10种方法
2018-02-27
【机器学习】确定最佳聚类数目的10种方法 在聚类分析的时候确定最佳聚类数目是一个很重要的问题,比如kmeans函数就要你提供聚类数目这个参数,总不能两眼一抹黑乱填一个吧。之前也被这个问题困扰过,看了很多 ...

一些常见的特征选择方法

一些常见的特征选择方法
2018-02-25
一些常见的特征选择方法 现实中产生的特征维度可能很多,特征质量参差不齐,不仅会增加训练过程的时间,也可能会降低模型质量。因此,提取出最具代表性的一部分特征来参与训练就很重要了。 通常有特征 ...

数据预处理的一些知识

数据预处理的一些知识
2018-02-24
数据预处理的一些知识 做研究时只要与数据分析相关就避免不了数据预处理。我们常见的预处理包括:标准化(规范化),归一化,零均值(化),白化,正则化……这些预处理的目的是什么呢?网上查的总是零零散 ...

主成分分析和因子分析及其在R中的…

主成分分析和因子分析及其在R中的…
2018-01-13
主成分分析和因子分析及其在R中的… 主成分分析和探索性因子分析是两种用来探索和简化多变量复杂关系的常用方法,它们之间有联系也有区别。 主成分分析(PCA)是一种数据降维方法,它能将大量相关变量转化为 ...

数据科学的基本内容

数据科学的基本内容
2018-01-08
数据科学的基本内容 什么是数据科学?它和已有的信息科学、统计学、机器学习等学科有什么不同?作为一门新兴的学科,数据科学依赖两个因素:一是数据的广泛性和多样性;二是数据研究的共性。现代社会的各行各业都 ...

奇异值分解(SVD)原理详解及推导

奇异值分解(SVD)原理详解及推导
2017-12-22
奇异值分解(SVD)原理详解及推导 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系。前段时间看了国外的一篇文章,叫A Singularly Valuable Deco ...

OK