cda

数字化人才认证

首页 > 行业图谱 >

1234 1/4
无序多分类logistic回归在市场营销中的应用
2024-12-06
数据分析是市场营销领域中不可或缺的工具,而无序多分类logistic回归作为一种重要的建模技术,为我们提供了深入洞察各种市场营销活动的效果。在进行数据分析时,我们经常会涉及到数据仓库设计中的概念,特别是维度表 ...
Python实现无序多分类logistic回归的实例
2024-12-06
在处理多分类问题时,无序多分类Logistic回归是一种强大的统计方法,特别适用于具有多个无序类别的情况。通过以下Python示例,我们将演示如何有效实现这一方法,以及评估模型性能。 无序多分类Logistic回归广泛应用 ...
无序多分类logistic回归中的特征选择方法
2024-12-06
在无序多分类Logistic回归中,特征选择是至关重要的一步,直接影响模型性能和解释能力。选择合适的特征可以使模型更加简洁高效,提高预测准确性,从而为数据分析师带来更好的工作成果和职业发展机会。下面将介绍几种 ...

spss如何把一个 多分类 变量改为二分类变量?

spss如何把一个多分类变量改为二分类变量?
2023-06-01
SPSS是一款广泛使用的统计软件,它可以方便地对数据进行分析和处理。在数据预处理中,有时需要将一个多分类变量转换为二分类变量,这可以通过SPSS的变量转换功能来实现。本文将介绍如何使用SPSS将一个多分类变量转 ...

pytorch中 多分类 的focal loss应该怎么写?

pytorch中多分类的focal loss应该怎么写?
2023-04-12
PyTorch是一种广泛使用的深度学习框架,它提供了丰富的工具和函数来帮助我们构建和训练深度学习模型。在PyTorch中,多分类问题是一个常见的应用场景。为了优化多分类任务,我们需要选择合适的损失函数。在本篇文章 ...

SPSS实例教程:无序 多分类 Logistic回归

SPSS实例教程:无序多分类Logistic回归
2020-12-08
1、问题与数据 为了探讨基因X突变与恶性肿瘤Y不同组织类型发生风险的关系,某医生设计了一项病例对照研究。该医生纳入所在科室一年收治的145名该恶性肿瘤患者,并从医院体检数据库中随机选择了100名未患该肿瘤 ...

SPSS实例教程:有序 多分类 Logistic回归

SPSS实例教程:有序多分类Logistic回归
2017-04-27
SPSS实例教程:有序多分类Logistic回归 1、问题与数据 在某胃癌筛查项目中,研究者想了解首诊胃癌分期(Stage)与患者的经济水平的关系,以确定胃癌筛查的重点人群。为了避免性别因素对结论的混杂影响,研究 ...

【CDA干货】大模型每层神经元个数怎么定?从原理到实操的完整指南

【CDA干货】大模型每层神经元个数怎么定?从原理到实操的完整指南
2025-11-10
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少会导致 “欠拟合”(模型容量不足,无法捕捉复杂规律),个数过多则会引发 “过拟合” ...

【CDA干货】机器学习分类模型:从原理到实战的完整指南

【CDA干货】机器学习分类模型:从原理到实战的完整指南
2025-11-06
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 / 恶性)”,从 “客户流失预测(流失 / 留存)” 到 “图像分类(猫 / 狗 / 汽车)” ...

【CDA干货】卡方检验 P 值与 OR 值:从关联判断到强度量化的互补逻辑

【CDA干货】卡方检验 P 值与 OR 值:从关联判断到强度量化的互补逻辑
2025-11-05
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是两个高频但易混淆的指标:有人误将 “P 值小” 等同于 “关联强度大”,也有人忽略 P ...

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具
2025-10-31
在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户是否会购买产品”“识别交易是否为欺诈”。这类问题无法用预测数值的线性回归解决,而 ...

【CDA干货】前向神经网络隐藏层与神经元个数的确定:从原理到实操指南

【CDA干货】前向神经网络隐藏层与神经元个数的确定:从原理到实操指南
2025-10-29
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个开发者都会面临的核心决策。这两个参数直接决定了模型的 “容量”—— 即拟合复杂数据 ...

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南
2025-10-21
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐藏层 MLP 识别复杂图像),太多则会引发 “过拟合”“训练缓慢”“资源浪费”(如用 1 ...

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”
2025-10-11
在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified Data Analyst)分析师每次取数都需 “翻箱倒柜”,不仅浪费 60% 的时间在找数据上,还 ...

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战
2025-10-09
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 “量化错误”(计算预测值与真实值的差距),反向传播负责 “定位错误来源”(沿着神 ...

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南
2025-09-29
XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型,但传统决策树存在 “易过拟合、精度有限、对噪声敏感” 等缺陷。而 XGBoost(Extreme ...

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径
2025-09-25
深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关键超参数之一 —— 过少的神经元会导致模型 “欠拟合”(无法学习到数据的复杂规律), ...

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向
2025-09-10
统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定目标构建的 “数据 - 逻辑 - 结论” 转化载体。在实际应用中,相同的数据通过不同目的 ...

【CDA干货】K-S 曲线、回归与分类:数据分析中的重要工具

【CDA干货】K-S 曲线、回归与分类:数据分析中的重要工具
2025-08-07
K-S 曲线、回归与分类:数据分析中的重要工具​ 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各自承担着不同的角色,又在实际应用中相互关联、协同作用,共同为数据解读、预测和决策 ...

【CDA干货】解析神经网络中 Softmax 函数的核心作用

【CDA干货】解析神经网络中 Softmax 函数的核心作用
2025-07-29
解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力,使得神经网络能够处理复杂的任务。而 Softmax 函数作为一种常用的激活函数,在神经网 ...
1234 1/4

OK
客服在线
立即咨询