京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在处理多分类问题时,无序多分类Logistic回归是一种强大的统计方法,特别适用于具有多个无序类别的情况。通过以下Python示例,我们将演示如何有效实现这一方法,以及评估模型性能。
无序多分类Logistic回归广泛应用于数据科学和机器学习领域,为处理复杂分类问题提供了便利。让我们一起通过以下步骤深入了解其应用:
首先,让我们导入所需的库,包括numpy、pandas、matplotlib以及sklearn中的LogisticRegression。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report, cohen_kappa_score
我们将使用经典的鸢尾花数据集(Iris Dataset)作为示例。该数据集包含150个样本,每个样本具有4个特征,并分属于3个类别之一。
from sklearn.datasets import load_iris
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
将数据集划分为训练集和测试集,常用比例为80%训练,20%测试。
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
使用LogisticRegression类训练模型,设置multi_class='auto'以自动选择适当的多分类策略。
# 创建Logistic回归模型
model = LogisticRegression(penalty='l2', solver='liblinear', multi_class='auto', random_state=42)
# 训练模型
model.fit(X_train, y_train)
利用训练好的模型对测试集进行预测。
# 对测试集进行预测
y_pred = model.predict(X_test)
通过混淆矩阵、分类报告和Kappa系数来评估模型性能。
# 生成混淆矩阵
cm = confusion_matrix(y_test, y_pred)
print("混淆矩阵:")
print(cm)
# 生成分类报告
cr = classification_report(y_test, y_pred)
print("分类报告:")
print(cr)
# 计算Kappa系数
kappa = cohen_kappa_score(y_test, y_pred)
print("Kappa系数:", kappa)
通过绘制混淆矩阵,我们可以更直观地了解模型的预测结果。
# 绘制混淆矩阵
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('混淆矩阵')
plt.colorbar()
tick_marks = np.arange(len(iris.target_names))
plt.xticks(tick_marks, iris.target_names, rotation=45)
plt.yticks(tick_marks, iris.target_names)
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], '.2f'),
horizontalalignment="center",
color="white" if cm[i, j] > cm.max() / 2 else "black")
plt.ylabel('真实标签')
plt.xlabel('预测标签')
plt.tight_layout()
plt.show()
通过上述步骤,我们成功实现了无序多分类Logistic回
归模型的训练、预测和评估过程。接下来,我们将展示完整的Python代码实现。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report, cohen_kappa_score
from sklearn.datasets import load_iris
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建Logistic回归模型
model = LogisticRegression(penalty='l2', solver='liblinear', multi_class='auto', random_state=42)
# 训练模型
model.fit(X_train, y_train)
# 对测试集进行预测
y_pred = model.predict(X_test)
# 生成混淆矩阵
cm = confusion_matrix(y_test, y_pred)
print("混淆矩阵:")
print(cm)
# 生成分类报告
cr = classification_report(y_test, y_pred)
print("分类报告:")
print(cr)
# 计算Kappa系数
kappa = cohen_kappa_score(y_test, y_pred)
print("Kappa系数:", kappa)
# 绘制混淆矩阵
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.colorbar()
tick_marks = np.arange(len(iris.target_names))
plt.xticks(tick_marks, iris.target_names, rotation=45)
plt.yticks(tick_marks, iris.target_names)
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], '.2f'),
horizontalalignment="center",
color="white" if cm[i, j] > cm.max() / 2 else "black")
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.tight_layout()
plt.show()
通过以上代码,我们实现了无序多分类Logistic回归模型的训练、预测和评估,并通过混淆矩阵和其他指标来评估模型性能。您可以根据自己的数据集和需求进行相应地修改和调整。希望这对您有所帮助!如果需要进一步的帮助或解释,请随时告诉我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15