cda

数字化人才认证

首页 > 行业图谱 >

123 1/3
无序多分类logistic回归在市场营销中的应用
2024-12-06
数据分析是市场营销领域中不可或缺的工具,而无序多分类logistic回归作为一种重要的建模技术,为我们提供了深入洞察各种市场营销活动的效果。在进行数据分析时,我们经常会涉及到数据仓库设计中的概念,特别是维度表 ...
Python实现无序多分类logistic回归的实例
2024-12-06
在处理多分类问题时,无序多分类Logistic回归是一种强大的统计方法,特别适用于具有多个无序类别的情况。通过以下Python示例,我们将演示如何有效实现这一方法,以及评估模型性能。 无序多分类Logistic回归广泛应用 ...
无序多分类logistic回归中的特征选择方法
2024-12-06
在无序多分类Logistic回归中,特征选择是至关重要的一步,直接影响模型性能和解释能力。选择合适的特征可以使模型更加简洁高效,提高预测准确性,从而为数据分析师带来更好的工作成果和职业发展机会。下面将介绍几种 ...

spss如何把一个 多分类 变量改为二分类变量?

spss如何把一个多分类变量改为二分类变量?
2023-06-01
SPSS是一款广泛使用的统计软件,它可以方便地对数据进行分析和处理。在数据预处理中,有时需要将一个多分类变量转换为二分类变量,这可以通过SPSS的变量转换功能来实现。本文将介绍如何使用SPSS将一个多分类变量转 ...

pytorch中 多分类 的focal loss应该怎么写?

pytorch中多分类的focal loss应该怎么写?
2023-04-12
PyTorch是一种广泛使用的深度学习框架,它提供了丰富的工具和函数来帮助我们构建和训练深度学习模型。在PyTorch中,多分类问题是一个常见的应用场景。为了优化多分类任务,我们需要选择合适的损失函数。在本篇文章 ...

SPSS实例教程:无序 多分类 Logistic回归

SPSS实例教程:无序多分类Logistic回归
2020-12-08
1、问题与数据 为了探讨基因X突变与恶性肿瘤Y不同组织类型发生风险的关系,某医生设计了一项病例对照研究。该医生纳入所在科室一年收治的145名该恶性肿瘤患者,并从医院体检数据库中随机选择了100名未患该肿瘤 ...

SPSS实例教程:有序 多分类 Logistic回归

SPSS实例教程:有序多分类Logistic回归
2017-04-27
SPSS实例教程:有序多分类Logistic回归 1、问题与数据 在某胃癌筛查项目中,研究者想了解首诊胃癌分期(Stage)与患者的经济水平的关系,以确定胃癌筛查的重点人群。为了避免性别因素对结论的混杂影响,研究 ...

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”
2025-10-11
在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified Data Analyst)分析师每次取数都需 “翻箱倒柜”,不仅浪费 60% 的时间在找数据上,还 ...

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战
2025-10-09
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 “量化错误”(计算预测值与真实值的差距),反向传播负责 “定位错误来源”(沿着神 ...

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南
2025-09-29
XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型,但传统决策树存在 “易过拟合、精度有限、对噪声敏感” 等缺陷。而 XGBoost(Extreme ...

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径
2025-09-25
深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关键超参数之一 —— 过少的神经元会导致模型 “欠拟合”(无法学习到数据的复杂规律), ...

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向
2025-09-10
统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定目标构建的 “数据 - 逻辑 - 结论” 转化载体。在实际应用中,相同的数据通过不同目的 ...

【CDA干货】K-S 曲线、回归与分类:数据分析中的重要工具

【CDA干货】K-S 曲线、回归与分类:数据分析中的重要工具
2025-08-07
K-S 曲线、回归与分类:数据分析中的重要工具​ 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各自承担着不同的角色,又在实际应用中相互关联、协同作用,共同为数据解读、预测和决策 ...

【CDA干货】解析神经网络中 Softmax 函数的核心作用

【CDA干货】解析神经网络中 Softmax 函数的核心作用
2025-07-29
解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力,使得神经网络能够处理复杂的任务。而 Softmax 函数作为一种常用的激活函数,在神经网 ...
交叉熵损失函数的梯度下降算法
2024-12-05
在机器学习和深度学习领域,交叉熵损失函数扮演着关键角色,特别是在分类问题中。它不仅被广泛运用于神经网络的训练过程,而且通过衡量模型预测的概率分布与实际标签分布之间的差异,指导着模型参数的优化路径。 交 ...

数据分析师教程《Python数据分析极简入门》第2节 1 Pandas简介

数据分析师教程《Python数据分析极简入门》第2节 1 Pandas简介
2024-11-20
《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓核心中的核心。 那怎么样挑核心重点呢? 在你不熟悉的情况下,肯定需要请教别人,需要 ...
精准营销的需求分析报告
2023-12-06
精准营销的需求分析报告 0.引言   精准营销是一种利用数据和技术手段,对目标受众进行定位并进行个性化营销的策略。它包括了多种技术和方法,如人工智能、大数据分析、营销自动化等。通过收集和分析客户 ...
精准营销的需求分析报告
2023-11-30
精准营销的需求分析报告 0.引言   精准营销是一种利用数据和技术手段,对目标受众进行定位并进行个性化营销的策略。它包括了多种技术和方法,如人工智能、大数据分析、营销自动化等。通过收集和分析客户 ...
机器学习模型评估的常见方法有哪些?
2023-10-17
机器学习模型评估是确定模型在处理未见示例时的有效性和性能的关键过程。在进行模型评估时,我们需要采用一系列常见的方法来测量和比较不同模型之间的表现。下面是常见的机器学习模型评估方法: 训练集与测试集划 ...
如何评估一个机器学习模型的性能?
2023-08-25
随着机器学习技术的快速发展,我们越来越多地依赖于机器学习模型来解决各种复杂问题。然而,为了确保模型的可靠性和有效性,我们需要对其性能进行评估。本文将介绍评估机器学习模型性能的常用指标和方法,帮助读者 ...
123 1/3

OK
客服在线
立即咨询