cda

数字化人才认证

首页 > 行业图谱 >

【CDA干货】Excel 辅助 K-Means 聚类实操手册

【CDA干货】Excel 辅助 K-Means 聚类实操手册
2025-10-29
这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透视图本身无法直接执行聚类分析,它是 “数据汇总与可视化工具”,而聚类分析是需要算法 ...

CDA 数据分析师:列联表分析与卡方检验实战指南 —— 破解分类变量的关联密码

CDA 数据分析师:列联表分析与卡方检验实战指南 —— 破解分类变量的关联密码
2025-10-28
在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式偏好”“会员等级是否与复购意愿相关”。这类问题的核心解决方案,正是 “列联表分析 ...

CDA 数据分析师:假设检验实战指南 —— 用数据验证业务假设的科学方法

CDA 数据分析师:假设检验实战指南 —— 用数据验证业务假设的科学方法
2025-10-27
对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转化为可验证的统计假设,通过数据排除随机波动,得出可靠结论” 的核心技能。例如,当业 ...

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南
2025-10-21
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐藏层 MLP 识别复杂图像),太多则会引发 “过拟合”“训练缓慢”“资源浪费”(如用 1 ...

【CDA干货】特征单变量筛选:从原理到实战,高效精简特征的核心方法

【CDA干货】特征单变量筛选:从原理到实战,高效精简特征的核心方法
2025-10-21
在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特征(如 “用户 ID”“无效时间戳”),既能降低后续建模的计算成本(如减少 50% 特征可 ...

CDA 数据分析师:数据采集方法实战指南 —— 筑牢数据分析的 “源头活水”

CDA 数据分析师:数据采集方法实战指南 —— 筑牢数据分析的 “源头活水”
2025-10-20
在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不合规,后续的清洗、建模、分析都将沦为 “无米之炊”。CDA(Certified Data Analyst) ...

CDA 数据分析师:数字化时代数据思维的践行者与价值转化者

CDA 数据分析师:数字化时代数据思维的践行者与价值转化者
2025-10-16
在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法,金融机构靠信贷数据降低坏账风险,零售门店靠客流数据调整货架布局。但并非拥有数据就 ...

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南
2025-10-14
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据复杂规律);层数过多,又会导致 “过拟合”(记忆训练噪声)、训练效率低下、梯度消 ...

企业名称:金鹰集团   招聘岗位:物业集团数字化副总 55-80k    (数据分析岗位招聘信息)

企业名称:金鹰集团 招聘岗位:物业集团数字化副总 55-80k (数据分析岗位招聘信息)
2025-10-13
职位介绍 1、数字化战略规划:结合物业行业数字化趋势(如智慧物业、AIoT 应用、大数据赋能)与集团业务目标,制定集团数字化中长期战略与实施路径,明确数字化建设重点(如智慧运营平台、业主服务数字化、数据 ...

【CDA干货】解锁分库分表后的JOIN密码:突破数据库性能瓶颈

【CDA干货】解锁分库分表后的JOIN密码:突破数据库性能瓶颈
2025-10-13
分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数应用的需求。以一个小型电商网站为例,在创业初期,用户数量可能只有几千人,商品种类 ...

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术
2025-10-11
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银行 APP 的 “登录→查询余额→转账”—— 都构成了带有时间顺序的 “行为序列”。这些 ...

【CDA干货】机器学习特征重要性分析:原理、实战与业务落地指南

【CDA干货】机器学习特征重要性分析:原理、实战与业务落地指南
2025-10-11
在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模型效率,更能揭示 “哪些因素真正影响目标结果”(如用户流失的核心原因、房价波动的关 ...

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”
2025-10-11
在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified Data Analyst)分析师每次取数都需 “翻箱倒柜”,不仅浪费 60% 的时间在找数据上,还 ...

企业名称:万古恒信     招聘岗位: 数据分析师 10-12K    (数据分析岗位招聘信息)

企业名称:万古恒信 招聘岗位: 数据分析师 10-12K (数据分析岗位招聘信息)
2025-10-10
岗位职责 1、负责BI与数据开发类平台产品的产品运营,包括但不限于用户运营、活动运营、内容运营、传播运营等工作; 2、重点负责BI与数据开发类平台产品客服运营工作,积极响应用户问题,持续保障问题解决; 3、负责 ...

【CDA干货】Pandas 选取特定值所在行:6 类核心方法与实战指南

【CDA干货】Pandas 选取特定值所在行:6 类核心方法与实战指南
2025-09-30
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之一 —— 无论是筛选 “性别为男的用户”“销售额超过 1000 的订单”,还是 “包含‘北 ...

【CDA干货】Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界

【CDA干货】Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界
2025-09-29
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分类标签,通过数据自身的相似性将样本划分为若干组(聚类),广泛用于客户分群、产品归 ...

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”
2025-09-29
在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加工—— 即将分散的原始数据(如用户行为日志、订单记录)通过清洗、计算、建模等手段, ...

CDA 数据分析师:以 SQL 为刃,劈开数据查询与分析的 “效率壁垒”

CDA 数据分析师:以 SQL 为刃,劈开数据查询与分析的 “效率壁垒”
2025-09-28
在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论是从千万级订单表中提取目标数据,还是从多表关联中整合用户消费信息,抑或是通过聚合 ...

企业名称:多多迦游     招聘岗位:数据分析师(研发体系) 15-30K·15薪 (数据分析岗位招聘信息)

企业名称:多多迦游 招聘岗位:数据分析师(研发体系) 15-30K·15薪 (数据分析岗位招聘信息)
2025-09-28
1. 负责使用QuickSight、Tableau等数据可视化工具搭建和维护指标看板,确保数据的实时性和准确性。 2. 对产品和研发数据进行深入分析,提取关键业务指标,支持业务决策和运营优化。 3. 定期生成和维护数据报告,包括 ...

企业名称:山东顺漾信息科技    招聘岗位: 数据分析 10-11K (数据分析岗位招聘信息)

企业名称:山东顺漾信息科技 招聘岗位: 数据分析 10-11K (数据分析岗位招聘信息)
2025-09-24
岗位职责: 1. 设计、开发并维护大数据分析系统,确保系统高效运行; 2. 对复杂数据进行深入分析,提取有价值的信息以支持业务决策; 3. 参与数据预处理、清洗及建模,以提升数据质量和精准度; 4. 与团队合作 ...

OK
客服在线
立即咨询