大家好,我叫李欣,是一名CDA Level II持证人。在这里很高兴跟大家分享一下我的备考心得。 我是零售业的一名数据分析师,在一家知名的连锁超市工作。随着 ... ...
2025-08-12
CDA数据分析师 出品 编辑:Mika 作者:杨迅 CDA Level Ⅰ 持证人 大家好,我叫杨迅,是一名CDA Level Ⅰ 持证人,今天 ...
2024-08-12
图中提供了不同注册日期的注册用户人数及在注册后的每日登录人数的统计数据,请回答以下问题:4)留存率指标使用的是哪种计算规则? B. 差异百分比 D. 无法确定 每日登录人数/首 ...
2024-10-14
在Excel中去除重复数据是一项常见的任务,它可以帮助我们清理数据并提取关键信息。下面是一个简单易懂的步骤,可帮助您在Excel中有效地去除重复数据。 第一步:选择要处理的数据范围 在Excel工作表中,首先选择 ...
2024-09-14
CDA数据分析师 出品 作者:郭荫娇 CDA Level Ⅰ 持证人 *我报考CDA认证的契机 根据已毕业师兄师姐,我了解到不少企业把CDA证书作为内部数据分析人才的评定标准,有的也有在招聘时明确说明需 ...
2024-08-12
编辑:Mika 大家好,我叫唐一楠,是一名CDA Level Ⅰ 持证人。在这里很高兴跟大家分享一下我的备考心得。 大四上学期考研失利后,我打算找数据分析相关的工作。我认为如果能拿到CDA的证书的 ...
2024-08-12大家好,我叫李明,是一家金融公司的风险管理经理。今天很高兴能够和大家分享我取得CDA Level II认证的备考经验和一些个人建议。 我是如何备考的 在备考CDA Level II的过程中,我首先制定了一个详细的学习 ...
2024-08-09大家好,我是张晓明,一名在金融行业工作的数据分析师。最近我成功地通过了CDA Level II的认证考试,想借此机会分享一下我的备考经验,同时也给即将参加CDA考试的朋友们一些建议。 我是如何备考的 在我决定 ...
2024-08-09
大家好,我叫陈思宇,是一名CDA Level I 持证人。在这里很高兴跟大家分享一下我的备考心得。 我是金融工程专业的大四学生,就读于上海财经大学金融学院。 我是如何备考的 因为我已经是大四的学生,学校的 ...
2024-08-09
大家好,我是张琳,目前在一家领先的电商平台担任数据分析师。今天我很高兴能和大家分享我的CDA Level II认证备考经验。 我在电商领域工作,主要负责用户行为分析、市场趋势预测以及产品推荐算法的优化等工作。 ...
2024-08-09数据分析师如何提高专业水平? 介绍数据分析的基本定义和重要性 数据分析是指利用统计学、数据挖掘和机器学习等技术,对大规模数据进行分析、挖掘和建模,以揭示数据背后的信息和规律,支持决策和创 ...
2023-10-19在当今数字化的时代,网店经营者需要利用大数据和数据分析来优化业务运营,提升销售额。通过深入挖掘和分析海量数据,网店可以获得有关消费者行为、产品趋势、市场竞争等方面的洞察,并基于这些信息制定决策,改进 ...
2023-10-11数据分析是当今数字时代中备受关注的热门领域之一。随着大数据的兴起和企业对数据驱动决策的需求增加,数据分析师成为许多公司迫切需要的人才。如果你想进入数据分析行业,并且获取宝贵的实习机会,下面是一些有用 ...
2023-10-11在当今数字化时代,大规模数据处理已成为许多企业和组织中不可或缺的任务。然而,随着数据量的不断增长,如何提高数据处理的效率成为一个关键问题。本文将探讨几种提高大规模数据处理效率的策略,并介绍其原理和实 ...
2023-10-11在商业领域,准确地预测销售额对于企业的决策和规划至关重要。回归分析是一种强大的统计工具,可以帮助我们理解和预测变量之间的关系。本文将介绍如何运用回归分析技术来预测销售额,并探讨其方法和应用。 第一 ...
2023-10-11预测原材料和零部件的需求量对于企业来说至关重要。这有助于制定合理的采购计划,确保供应链的顺畅运作,并避免因短缺或过剩而导致的生产延误或资金浪费。以下是一些方法和策略,可以帮助企业进行原材料和零部件需 ...
2023-10-11在当今信息时代,数据成为决策和分析的关键。Microsoft Excel作为广泛使用的电子表格工具,提供了强大的功能来处理和分析数据。其中,数据模型是Excel中非常有用的功能之一。本文将向您介绍如何在Excel中创建数据 ...
2023-10-11随着信息时代的到来,我们正面临着海量高维数据的挑战。高维数据具有复杂性和巨大的信息量,因此需要采用有效的分析和可视化方法来揭示其潜在模式和关联。本文将介绍一些应对高维数据分析和可视化的策略,帮助读者 ...
2023-10-11提高用户参与度是许多企业和组织在数字时代所面临的共同挑战。数据分析可以成为一种强大的工具,帮助我们了解用户行为、需求和偏好,以便优化产品和服务,并提高用户参与度。本文将探讨如何应用数据分析来实现这一 ...
2023-10-11在当今信息爆炸的时代,数据已成为重要资源。然而,海量的数据中埋藏着无数宝贵的信息,我们需要通过数据挖掘的技术来发现其中有用的洞见。本文将介绍数据挖掘的关键步骤,帮助您更好地挖掘数据并揭示其中的价值。 ...
2023-10-11在当今数字化时代,数据成为了企业最宝贵的资产之一。数据挖掘作为一种强大的分析技术,可以帮助企业从海量数据中挖掘出有价值的信息。而个性化营销则是利用这些信息,将市场活动和产品定制化,以满足不同消费者的 ...
2023-10-11在当今信息爆炸的时代,数据分析已成为决策和解决问题的重要工具。无论是对于公司的经营管理还是个人职业发展,掌握数据分析技能都具备了重要性。然而,如何提高自己的数据分析技能水平成为许多人关注的焦点。本文 ...
2023-10-11在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16