
sas快速处理大数据的使用技巧
用sas在做数据分析时,有很多朋友会遇到和我一样的问题吧,数据分析师在这里分享一下。1.测试代码的时候,可以从大数据集中抽取一部分数据来进行测试,而不比直接在大文件上全部进行测试。抽取数据这个有好多种方法常用的如使用obs=option选项,proc surveyselect进行分层抽样,利用种子产生随机数来抽取等等,反正怎么方便怎么取。如
或者
2.每个数据集最好只保留自己想要的变量,变量太多是会影响效率的,所以无关变量可以drop掉,或者keep想要的变量。
3.在对符合已知变量条件的记录进行处理时,果断先进行筛选,然后在进行处理。同时在 Data步建立新数据集,在进行的条件筛选中,where的效率比if高,因为where在读入的时候就已经进行判断,而if则是等到全部读完的时候才进行判断。如需对class数据集中的男生建立一个新变量weight_new,以下这种写法是不可取的。数据分析师培训
可以这么写
4.一些能省略的data步,如先经过data步进行简单的条件筛选,然后进行proc步的一些操作,诸如此类的data步,尽量省略吧。
完全可以这么写
5.需要修改数据集变量的label和format格式时,还是通过proc datasets过程进行修改效率比较快,它不需要记录进入pdv,比起data步更有效率。
6.纵向合并数据集时,如果生成的目标表就是来源表之一,那么proc append会比data步更有效率。
proc append和proc datasets中的append过程效率是一样的。
7.对于大数据集,一般都会讲数据集压缩,以节省存储空间,sas里可以通过options compress=yes;来进行压缩。
8.如果我们想要查看一个变量顶部5%的记录,可以通过proc rank一步实现,而不需先通过univariate过程先将p95分位数求出,然后赋值给宏变量,最后再回到数据集中筛选。
9.在编写一些proc步时,对于分组变量最好是用class而不用by,因为用by是得对分组变量进行排序的。
10.视图的应用。视图是一个虚拟表,其内容由查询定义。同真实的表一样,视图包含一系列带有名称的列和行数据。但是,视图并不在数据库中以存储的数据值集形式存在。行和列数据来自由定义视图的查询所引用的表,并且在引用视图时动态生成。所以视图能够节省大量的空间,同时因为它不是以存储的形式存在,因此在一定程序上能够提高运行效率。如对生成的数据集进行means过程
11.format格式数据集的引用。比如说在信用卡交易数据集,每天的交易量都是很大的,同时包括境内境外交易,这时就存在币种转换问题。一张交易量很大的表,和一张币种汇率表,这时如果通过币种去连接两个数据集,首先得先对这两个数据集按币种排序,然后merge进行计算,当然有人想到直接用sql连接,不过这样消耗时间也都是非常大的。这时候就可以先将汇率表做成format的数据集形式,到时就可以直接使用了。如
注意format数据集的地址,如果非work逻辑库下,则需要加上这么一句话options fmtsearch=(逻辑库名称);
12.将数据集载入内存。该方法减少数据集内存分配和释放的次数,降低I/O处理量,提高SAS程序执行效率,但是相当消耗内存,需要确认系统有足够多的内存资源,同时在使用完后,要记得释放。具体形式如下
13.hash的应用。在data步中使用hash对象,不但可以快速有效地检索和读取数据,还可以实现数据集merge的功能,从而减少排序时间,提高了数据处理的能力,相对于merge,hash的效率更高,但是同时也很消耗内存,因此一般都是把小表放进hash中。如用前面汇率进行币种的连接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08