
量化投资需要把数据、策略、系统、执行四个方面综合起来完成一个有机的整体。你用了这些学科的知识去构建一个数理模型,一个投资决策模型,这是一个相对客观和理性的系统,是可以被应用于投资的第一步到最后一步的。
Python,MongoDB:
Python核心量化工具:Numpy/Scipy/Matplotlib/Pandas
Mongodb:非关系型数据库(nosql ),属于文档型数据库,在适量级的内存的Mongodb的性能是非常迅速的。
基本面选股与择时判断买卖点:
对于股票市场,量化投资主要包括量化选股、量化择时、算法交易、股票组合配置、资金或仓位管理、风险控制等。
选股的目标是从市场上所有可交易的股票中,筛选出适合自己投资风格的、具有一定安全边际的股票候选集合,通常称为“股票池”,并可根据自己的操作周期或市场行情变化,不定时地调整该股票池,作为下一阶段择时或调仓的基础。
量化选股的依据可以是基本面,也可以是技术面,或二者的结合。
择时的目标是确定股票的具体买卖时机,其依据主要是技术面。取决于投资周期或风格(例如中长线、短线,或超短线),择时策略可以从比较粗略的对股票价位相对高低位置的判断,到依据更精确的技术指标或事件消息等作为信号来触发交易动作。
一般来说,择时动作的产生可以基于日K线(或周K线),也可以基于日内的小时或分钟级别K线,甚至tick级的分时图等。
神经网路与深度学习在量化交易中的应用:
深度学习是机器学习的一个新的领域,它基于多层神经网络对数据中的高级抽象进行建模,其动机在于建立、模拟人脑进行分析学习的神经网络,模仿人脑的机制来解释数据。从市场微观结构的角度来说,股票价格的形成和变化是由买卖双方的交易行为决定的,对高频市场行情数据利用深度学习方法进行挖掘可以获得对未来股票价格走势有预测能力的模式。
一次4天学习上述全部内容:
Python机器学习与量化投资
时间:2019年5月1-4日 (四天) 北京, 6月6-9日 (四天) 上海
安排:上午9:00-12:00;下午1:30-4:30;答疑4:30-5:00
地点:北京市海淀区厂洼街3号丹龙大厦/上海市培训教室
学费:5000元 / 4200元 (仅限全日制在读本科生及硕士生优惠价);食宿自理
我要报名
讲师介绍:
蔡立耑(Terry Tsai),美国伊利诺伊大学金融硕士,华盛顿大学经济学硕士、博士,在国内外如美国、韩国有丰富的授课经验。带领博、硕士生从事投资决策、金融衍生品、风险分析、交易策略等领域的研究。
生长于台湾,求学于美国,在台湾的信息与金融业担任高级顾问,不仅拥有扎实的金融理论基础,而且具备广阔的国际视野与前沿的研究理念!经管之家资深量化投资讲师。
亲身实践各种金融应用,主持研究团队与台湾知名大学与企业合作开展各种金融研究,例如量化投资、风险分析等。在统计套利、金融大数据等领域有丰富的操作经验与授课经验。带领的量化投资研究团队用多种编程语言实现了统计套利以及风险管理自动化程序。
课程介绍:
人工智能与机器学习对交易与投资产生巨大影响。交易领域的人工智能应用,大多藉由机器学习来鍳别,分析资产价格变化的特征或因子,以利于构建盈利的交易策略。本课程将系统性介绍常用机器学习方法在股市的应用。
课程大纲:
Python 简介(一天)
1. Python对象类型
2. Python 常用语句和语法
3. Python函數
Python数据分析(一天)
1. Numpy程序库与多维数组
2. Pandas与数据处理
3. Matplotlib数据可视化
机器学习与量化交易(两天)
机器学习是从看似无序的数据中分析规律,识别可能具代表性的模式,再藉以对未知数据进行预测。
而股市具有大数据特征,应用机器学习方法从海量的股市数据中发现潜在规律,预测未来发展趋势,对于降低投资风险与增进决策效率显然有重要的意义。
本课程拟介绍如何应用下列的机器学习方法来预测股市,并分析不同方法的效能。
1. 逻辑回归
2. 线性判别分析
3. 二次判别分析
4. 随机森林
5. 支持向量机
6. 神经网路
7. 深度学习
报名流程:
1:点击“我要报名”,网上填写信息提交;
2:给予反馈,确认报名信息;
3:网上订单缴费;
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
联系方式:
魏老师
Tel:010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10