
Stata以其简单易懂和功能强大受到初学者和高级用户的普遍欢迎。使用时可以每次只输入一个命令,也可以通过一个Stata程序一次输入多个命令。这样的话即使发生错误,也较容易找出并加以修改。
Stata有很多功能较强且简单的数据管理命令,能够让复杂的操作变得容易。
Stata也能够进行大多数统计分析(回归分析,logistic回归,生存分析,方差分析,因子分析,以及一些多变量分析)。Stata的优势可能在于回归分析,logistic回归。
Stata较好地实现了使用简便和功能强大两者的结合。
推荐书目:《计量经济学及Stata应用》、《高级计量经济学及Stata应用》,作者:陈强
推荐理由:陈强老师的计量经济学教材,在设计上单独章节工具变量、二值选择模型等,解决其他教材没有详细讲解这部分的疑问。而且陈老师教材行文,以生活实际来讲计量,容易理解。《高级计量经济学及Stata应用》还加入多值选择模型、非参数估计、贝叶斯估计等内容。
2021年Stata高级计量新课纲,讲授高级计量经济学与Stata的秘笈。
时间:2021年5月1-6日(六天)
地点:北京市海淀区(缴费后发送交通住宿指南)
安排:上午9:00-12:00;下午2:00-5:00;答疑5:00-5:30
费用:6200元 /5400元 (学生价,仅限全日制在读本科和硕士在读);食宿自理
我要报名
讲师介绍:
陈强,分别于1992年与1995年获得北京大学经济学学士与硕士学位,2007年获美国Northern IllinoisUniversity数学硕士与经济学博士学位,现任山东大学经济学院教授,博士生导师,泰岳经济研究中心副主任(主持工作)。主要研究领域为计量经济学、经济史。
已独立发表论文于Oxford Economic Papers (lead article),Economica,Journalof Comparative Economics,《经济学(季刊)》、《世界经济》等国内外期刊。
著有畅销教材《高级计量经济学及Stata应用》(第2版,高教社,2014)与《计量经济学及Stata应用》(高教社,2015)。2010年入选教育部新世纪优秀人才支持计划。
培训目的:
掌握高级计量经济学的核心方法及Stata操作,不再茫然,知其然而知其所以然,迅速成为处理数据及定量分析的高手。
课程特色:
直观地解释高级计量经济学方法,通过案例学习相应的Stata操作,深入浅出地介绍实证分析与论文写作的精髓。
课程配套资料:
课程PPT、数据集及相关论文。
课程简介:
本次高级计量经济学及Stata现场班,将根据多次现场班的反馈进一步完善。在课程内容的设计上,主要指导思想是在较快时间内,将高级计量及Stata的精髓及核心内容,以通俗生动的语言以及大量的案例交给学员,并注重在各领域的常见应用,诸如面板数据、时间序列、工具变量法以及微观计量,乃至论文写作的各个环节技巧。由于学员的基础不同,本课程仅对学员背景做较低要求,即假设学员知道概率统计及少量线性代数,但不要求学过计量经济学或Stata操作。因为“大道至简至易”,初级计量与高级计量的本质是一样的,学子们需要的是能够直指人心地洞明计量原理与操作工具,然后得心应手地用于实战(而非完成习作)。
课程大纲:
第一讲,OLS及其标准误。
着重介绍小样本与大样本OLS,以及相应的普通标准误、异方差稳健标准误、异方差自相关稳健标准误、聚类稳健标准误、自助标准误(bootstrap standard errors)。深切理解OLS的原理与适用条件,是一切计量原理的基础。OLS拓展主题:虚拟变量、交互项、核心变量与控制变量的区别(控制变量的内生性)。
案例:改革开放的结构变动;红薯与旱灾的交互项;校外学习机会的代理变量。
第二讲,Stata快速入门。
及时地介绍Stata知识,以OLS在Stata的实现作为入门,体会Stata的简单与强大。
案例:美国电力企业的规模效应;冰淇淋的需求。
第三讲,工具变量法。
由于双向因果、遗漏变量、度量误差的普遍存在,内生性是实证研究的常见难题,而工具变量法是解决内生性的利器,包括2SLS、GMM、近乎外生的IV,控制函数法(Control Function)等。
案例:殖民者死亡率与制度;出生季度与教育年限;经济增长与非洲内战;国企改革的作用;警察与犯罪率;看电视与小儿自闭症;美国年轻男子的教育回报。
第四讲,二值选择模型。
被解释变量为虚拟变量的二值选择模型有着广泛的应用。包括Probit,Logit,MLE,QMLE,ivprobit,二元Probit,以及二值选择模型中的交互效应等。
案例:美国妇女的就业。
第五讲,静态面板。
面板数据由于能控制个体异质性(heterogeneity),缓解遗漏变量偏差,在实践中越来越重要。静态面板是最常见的面板,包括个体固定效应、随机效应、时间固定效应、双向固定效应、个体时间趋势、面板工具变量法(Panel IV)、交互固定效应(interactive fixed effects)等。
案例:美国交通死亡率,nlswork数据。
第六讲,动态面板。
经济现象常具有某种惯性或部分调整,即被解释变量的滞后值出现在方程右边。动态面板也因为可自带工具变量而应用广泛。包括差分GMM、水平GMM与系统GMM等。
案例:美国工人的工资决定。
第七讲,非参数与半参数估计(Nonparametric and Semiparametric Estimations)。
非参与半参方法由于其稳健性而日益进入标准的计量工具箱,包括核密度估计、核回归、K近邻回归、局部线性回归、局部多项式回归、LOWESS回归、半参数回归等。
案例:交互效应的设定误差;摩托车撞击实验;美国电力企业的规模效应。
第八讲,随机实验与自然实验。
实验方法因其可信度而日益兴起,成为实证研究的“黄金标准”,包括随机实验、第一类与第二类自然实验。
案例:劳动力市场的三个经典田野实验;最低工资立法与劳动力需求;越战老兵的长期收入。
第九讲,双重差分法(Difference-in-Differences,简记DID)。
双重差分法利用面板数据的优势,可克服部分内生性,是研究政策或项目处理效应(treatment effects)的常用工具。内容包括双重差分法、多期异时DID、平行趋势检验、广义DID、三重差分法等。
案例:伦敦霍乱的自然实验;大萧条货币政策与银行数量;最低工资立法与劳动力需求;银行管制放松与收入分配(Big Bad Banks);茶叶价格与性别比例;废除科举与革命起义;人工智能与国际贸易。
第十讲,匹配估计量(Matching Estimators)。
匹配估计量是反事实因果推断的重要方法,包括倾向得分匹配(Propensity Score Matching)、粗糙化精确匹配(CoarsenExact Matching)、偏差校正的马氏匹配(Bias-corrected Mahalanobis Matching),以及双重差分倾向得分匹配(PSM-DID)。同时介绍处理效应的其他估计方法,包括回归调整法(Regression Adjustment),逆概率加权法(Inverse Probability Weighting),双重稳健估计(DoublyRobust Estimator)。
案例:就业培训的处理效应;最低工资立法与劳动力需求。
第十一讲,断点回归(Regression Discontinuity Design)与拐点回归(Regression Kink Design)。
由于在断点附近存在局部随机分组,故断点回归的效力接近于随机实验,日益为研究者所青睐。内容包括精确断点回归、模糊断点回归、密度(操纵)检验、稳健性检验、拐点回归等。
案例:淮河以北冬季燃煤取暖与人均寿命;扶贫政策的效应;买房落户与户口价值;美国参议院选举的在位者优势;奖学金与大学入学;失业保险与失业期限。
第十二讲,合成控制法(Synthetic Control Method)。
在评价某处理地区的政策效应时,将控制地区进行最优的线性组合,以构造合成控制地区进行对比,这是估计处理效应的新兴强大方法。包括合成控制法的原理、算法与安慰剂检验等。
案例:西班牙巴斯克地区恐怖活动的经济后果;加州控烟法的成效;德国统一的效应。
第十三讲,回归控制法(Regression Control Method)。
与合成控制法类似,但回归控制法使用回归法来构成反事实的控制地区(Hsiao et al., 2012),比合成控制法更为简便易行。
案例:中国香港回归以及与中国内地经济整合的效应;四万亿经济刺激的效应;上海与重庆房产税试点的效应。
第十四讲,异质性处理效应(Heterogeneous treatment effects)。
包含异质性工具变量法的局部平均处理效应(Local Average Treatment Effect,简记LATE),以及双向固定效应模型的异质性处理效应(de Chaisemartin and D'Haultfoeuille, 2020)、模糊双重差分法(fuzzy DID)等。
案例:就业培训项目的不完全遵守(imperfect compliance);越战老兵的长期收入;报纸数量与大选投票率。
第十五讲,分位数回归(Quantile Regression)。
线性回归只是研究在给定X条件下, Y的条件期望E(Y|X);而分位数回归则研究在给定X条件下,Y的整个条件分布Y|X,从而揭示更多重要信息。内容包括分位数回归、分位数处理效应、分位数工具变量法、面板分位数回归等。
案例:恩格尔的食品开支数据;美国年轻男子的教育回报;距大学远近与教育回报;美国交通死亡率。
!赠送陈强老师《计量经济学及Stata应用》视频(时长46小时)
报名流程:
1. 点击“我要报名”网上提交报名信息;
2. 电话确认,订单缴费;
3. 缴费确认,开课前一周发送软件准备,电子版讲义;
4. 现场领取发票及邀请函。
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
同一单位六人以上同时报名8折优惠;
以上优惠与学生价优惠均不叠加。
联系方式:
尹老师
电话:010-53352991
QQ: 42884447
邮箱: yinna@pinggu.org
微信:yinyinan888
根据缴费顺序安排座位哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09