京公网安备 11010802034615号
经营许可证编号:京B2-20210330
华尔街传奇人物詹姆斯·西蒙斯(James Simons)运作的大奖章基金(Medallion)在1989-2009的二十年间,平均年收益率为35%,若算上44%的收益提成,则该基金实际的年化收益率可高达60%,比同期标普500指数年均回报率高出20多个百分点。
最为难能可贵的是,纵然是在次贷危机全面爆发的2008年,该基金的投资回报率仍可稳稳保持在80%左右的惊人水准。
西蒙斯通过将数学模型和投资策略相结合,逐步走上神坛,开创了由他扛旗的量化时代。
量化投资,就是利用计算机技术并且采用一定的数学模型去实践投资理念,实现投资策略的过程。
价值投资和趋势投资(技术分析)是引领过去一个世纪的投资方法,随着计算机技术的发展,已有的投资方法和计算机技术相融合,产生了量化投资。
常用的量化投资的工具有R/MATLAB/Python,各有利弊,选择Python的优势在于:
首先,开放,各种平台可以用,开源各种分析工具包,时间系列,机器学习等都方便。文件处理,网络,数据库对接都很容易。
其次,有不同的开源包或者接口支持不同的功用,性能不是问题。
再次,Python已成为人工智能时代流行的语言之一。
更简单,更通用,能做更多的事情,
这也是本次量化投资现场培训选择Python授课的主要原因:
Python量化投资从零基础到实战
时间:2018年4月20-23日 (四天)
安排:上午9:00-12:00;下午1:30-4:30;答疑4:30-5:00
地点:北京市海淀区厂洼街3号丹龙大厦附近
学费:5000元 / 4200元 (仅限全日制在读本科生及硕士生优惠价);食宿自理
我要报名
讲师介绍:
蔡立耑(Terry Tsai),美国伊利诺伊大学金融硕士,华盛顿大学经济学硕士、博士,在国内外如美国、韩国有丰富的授课经验。带领博、硕士生从事投资决策、金融衍生品、风险分析、交易策略等领域的研究。经管之家资深金牌量化投资讲师。
亲身实践各种金融应用,主持研究团队与台湾知名大学与企业合作开展各种金融研究,例如量化投资、风险分析等。在统计套利、金融大数据等领域有丰富的操作经验与授课经验。带领的量化投资研究团队用多种编程语言实现了统计套利以及风险管理自动化程序。
课程特色:
1:现场教学,可现场和老师互动,解决当下的量化投资疑惑;
2:课程内容丰富,囊括了必备的量化投资的理论知识;
3:课程内容新颖,应用前沿的学术理论;
4:教学过程深入浅出,以实例与实作印证所学;
5:学员能掌握Python,能在现实中通过此工具解决量化投资等综合金融问题;
6:可操作性强,将所介绍理论在实战中一一展示,即学即用,在实战中搭建课程的整体脉络。
课程大纲:
一、Python 编程
二、Python数据分析
1. Numpy
2. Pandas
3. Matplotlib
三、MongoDB
四、基本面:大师选股策略
1. 本杰明·格雷厄姆
2. 詹姆斯·奥肖内西
3. 查尔斯·布兰德斯
4. 彼得·林奇
5. 史蒂夫·路佛
五、技术面:择时判断买卖点
1. 捕捉K线形态
(1) 红三兵
(2) 金针探底
(3) 双响炮
(4) 小探兵
(5) 一阳穿三线
2. 趋势分析
(1) W底突破
(2) 关键点买入形态量化策略
(3) 上升三角形突破
(4) 三到五日下跌法策
(5) 上升平台突破
3. 技术指标分析
(1) MACD
(2) KDJ
(3) BOLL
(4) OBV
(5) RSI
(6) MA
六、神经网路与深度学习在量化交易中的应用
1. 神经网络
2. 卷积神经网路
3. 循环神经网路
报名流程:
1:点击“我要报名”,网上填写信息提交;
2:给予反馈,确认报名信息;
3:网上订单缴费;
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
联系方式:
魏老师
Tel:010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11