
一、SPSS数据分析的流程
二、SPSS特性
易用性强:操作界面极为友好,操作简单
良好的帮助系统和自学系统
为高级用户提高编程能力
功能强大:成熟的统计过程
完美的图形处理功能
提供多种数据准备技术
兼容性好:数据输入:Excel、lotus、Oracle、SQLserver、access、 dBASE、文本
数据输出:Word、HTML、XML、Excel、PowerPoint、PDF
三、数据的编辑
(一)常量
1、数值型常量:除了普通写法外还可以用科学计数法,如:1.3E18;
2、字符型常量:用单引号或双引号括起来如果字符中包含单引号,则必须使用双引号;
3、日期常量:日期个数的数据,一般需要使用日期函数进行转换;
(二)变量
1、变量名长度不能超过8;
2、三种基本的类型:数值、字符和日期;
3、可以在variableview界面设定变量的长度及小数位、变量的描述、变量值的描述、missing值、显示宽度、对齐方式和变量的测度方式;
(三)变量的测试方式
1、Scale:定距变量,如:身高、体重等;
2、Ordinal:定序变量,如:教育程度、级别等;
3、Nominal:定类变量,如:性别、民族等;
相关性分析是一项重要的数据分析工具,可以帮助我们理解变量之间的关系并做出相应的推断。通过散点图、相关系数和回归分析等方法,我们可以定量地衡量变量之间的相关程度,并将其应用于各个领域的研究与实践中。深入理解相关性分析的原理和应用,对于数据科学家和决策者来说都是至关重要的技能。
相关性分析背后的统计学原理很有趣吧?想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
(四)操作符与表达式
1、三种基本的运算:数学、关系和逻辑
2、数学运算符:+– * / ** ()
3、关系运算符:>>= < <= = ~=
4、逻辑运算符:&(AND)|(OR) ~(NOT)
5、三种运算对应三种表达式
(五)常用的数据操作命令
1、Data->SortCases
2、Transform->RankCases
3、Transform->Count
4、Transform->Recode
5、Transform->Automatic Recode
6、Transform->Compute
7、Data->Transpose
8、Data->Split Files
9、Data->Merge Files
(六)Compute
1、数值型:computenum1=value.
2、字符型:StringA(a11).compute a=’hello world’.
3、日期型:computedata1=date.mdy(month,day, year).
(七)Recode
1、recodevariable name(old value=new value).
2、recodevariable name(old value=new value) into new variable name.
3、字符型变量使用auto recode
(八)Splitfile
1、有的时候需要对变量做些分组的分析,但一些分析方法并不提供分组变量的设置选项这就需要用到Split file命令;
例如使用 Descriptives 做描述性分析,如果想分年龄做分析,这样就可以用年龄变量做为分组变量;
2、可以看到这里的Split其实是分组,而不是拆分文件;
3、analyzeall case分析所有的样本,不产生分组;
4、comparegroups产生对比分析组;
5、output by groups分组输入分析结果;
(九)MergeFile
1、add cases合并变量相同,但是case不同的文件;
2、addvariables合并变量不同,case相同的文件这里的变量不同可以是部分的变量不同,case相同也可以是一个文件的case是另外一个文件的子集;
(十)数据的分类汇总
1、使用Aggregate命令
2、指定分类变量对观测量进行分组,对每组观测量的各变量求描述统计量;
3、检查重复的数据
4、使用identifyduplicate cases
5、数据的加权
6、使用weightcase
7、选取一定的case进行分析
8、使用selectcases:在对数据的子集进行分析的时候需要用到这个命令;
(十一)常用的数学函
1、取绝对值:abs(数字型表达式)
2、求余数函数:mod(数字型表达式,模数),模数不能为0该函数在需要对某一变量求模数的余数时使用,如果对一个顺序编号或自然数序列求模数的余数,可将该序列按模数等距分类,从而实行等距抽样;
3、四舍五入函数:rnd(数字型表达式)
4、开方函数:sqrt(数字型表达式)
用SPSS做数据分析,快速入门数据分析师行业,就在经管之家SPSS数据分析师认证培训:
培训时间:北京:2018年1月6-7日,13-14日【四天周末班】;11-14日(四天连续班)
培训地点:北京市海淀区厂洼街3号丹龙大厦B座3018
授课安排:上午9:00至12:00; 下午1:30至4:30; 答疑4:30至5:00
培训费用:现场:3600元/人;全日制学生2800元/人(差旅及住宿费用自理);
在线直播:1900元/人
证书费用:400元,可以自愿申请工信部数据分析师证书
培训优惠(后三项优惠不叠加)
1、赠送SPSS数据统计分析师视频课程。
2、现场班老学员可以享受9折优惠。
3、同一机构3人以上报名,9折优惠。
4、同一机构6人以上报名,8折优惠。
讲师介绍
丁亚军、 数据分析总监,任职于南京上度市场咨询有限公司,SAS、SPSS统计学讲师,中国学习路径图国际中心技术顾问。曾参与2012国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核等大型数据处理项目,具有丰富的数据处理经验
课程大纲
1.SPSS的介绍
1.1 实例演示。
1.2 spss的特点。
1.3 spss界面介绍(综合设置、help帮助介绍)。
1.4 spss数据变量详解:变量类型、缺失值、变量测量等。
2.数据的输入与保存
2.1 数据获取:
2.1.1 单选题、多选题与开放题的数据的录入。
2.1.2 spss不同文件格式及外部数据(非spss数据格式)的导入。
2.2 个体水平数据集(宽型数据)与测量水平(长型数据)数据集的异同。
3. 数据预分析
3.1 数据清理
3.1.1 数据的选择
3.1.2 数据的合并
3.1.3 数据的拆分
3.1.4 检查异常值
3.1.5 个案的加权
3.1.6 缺失值
3.2 新变量生成,SPSS函数
3.3 使用SPSS变换数据结构——转置和重组
3.4 常用的描述性统计分析功能
3.4.1 频率过程
3.4.2 描述过程
3.4.3 探索过程
3.5 使用SPSS绘制常用统计图形
3.5.1散点图
3.5.2条图
3.5.3控制图
3.5.4 ROC曲线
4. 数据分析
4.1 假设检验
4.1.1 假设检验的原理
4.1.2 了解均值的显著性检验
4.2 差异分析及相关分析过程
4.2.1 均值过程、T检验与方差分析
4.2.2 案例分析1:产品质量差异分析
4.2.2 卡方分析
4.2.2.1 卡方分析原理
4.2.2.2 案例分析2:企业选址的区位分析
4.2.3 相关分析
4.2.4 偏相关分析
4.2.5 距离分析
4.3 回归分析基础
4.3.1 简单回归分析
4.3.2 多元回归分析
4.3.2.1 逐步回归
4.3.2.2回归预测与残差分析
4.3.2.3方差不齐与强影响点的处理—加权最小二乘法与最小一乘法
4.3.2.4共线性的处理—岭回归(ridge regression)
4.3.2.5注意问题
4.3.2.6案例分析3:产品合格率的影响因素及其预测分析
4.3.3 logistic回归分析
案例分析4:客户违约信息研究
4.3.4 曲线估计
4.4 因子分析与聚类分析
4.4.1 主成分分析与因子分析
4.4.2 快速聚类法与聚类法
4.4.3 判别分析
4.4.4案例分析5:客户购买力信息研究
4.5 对应分析
4.5.1对应分析原理
4.5.2简单对应分析
4.5.3多元对应分析(最优尺度分析)
4.5.4案例分析6:企业选址的区位分析(案例2)
4.6 bootstrap技术
4.6.1 bootstrap原理
4.6.2 bootstrap应用
4.6.3 bootstrap功能在SPSS中的实现
5. 使用SPSS制作数据分析的统计报表
5.1 制作报表前对变量的检查
5.2 制作报表的中对不同类型的数据处理
5.3 报表生成功能与其他选项的区别
5.4 注意事项
6. SPSS编程操作
6.1 程序编辑窗口操作入门
6.2 基本语句
6.3 结构化语句
6.4 实例讲解spss编程
课程特色
1、结构有层次、内容全面、通俗易懂,通过SPSS工具一步步带您走进数据分析的世界,探索数据分析的价值,让数据分析变得既简单又有趣。
2、从工作实际问题出发,总结并提炼工作中SPSS经常用到并且非常实用的数据处理、数据分析实战方法和技巧。
3、力求通俗易懂的介绍数据分析方法与技巧,在不影响学习理解的前提下,尽可能避免使用晦涩难懂的统计术语或模型公式
培训对象
1、从事企业数据分析、数据挖掘及相关工作的决策分析、工程技术人员;
2、需要进行大数据统计分析的高校、科研院所的科技工作者;
3、打算从事数据统计分析的在校生、在职人员。
报名流程及咨询
1. 点击“立即报名”提交报名信息;
2. 给予反馈,确认报名信息;
3. 网上交费
4. 开课前一周发送培训教室路线图,培训现场领取发票
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14