
用数据讲述最好的故事:如何做出赏心悦目的数据可视化
当设计地图时,我会想:我想让观看者如何阅读地图上的信息?我想让他们一目了然地看出地理区域的测量结果变化吗?我想要显示出特定地区的多样性吗?或者我想要标明某个区域内的高频率活动或者相对的体积/密度?
有多种方法可以在地图中快速而集中的呈现出可视化数据。我常用的几个是:
·Dot density (点密度图)——使用点或其他符号展示特征或现象的集体情况(密度)的地图样式。例如,显示区域内的交集或高/低活动量。
·Choropleth (分级统计图)——这是一种主题地图样式,它根据地图上显示的数据强度,对应的展现在阴影颜色或图案纹理上。例如,显示人口密度或人均收入。
· Hexagonal binning / hexbin (六边形图)——这种地图的风格适合显示地理上的一般主题。在choropleth地图中,它的颗粒比 dot density密度小,不受边界约束。
· Heatmap (热度图)——这种地图使看地图的人能够在缩放因子中独立地感知点密度。也是最不受约束的,因为它不符合地理范围。
举例
当对点数据进行可视化时,点密度图是有效的,通常用于展现活动,特征和其他地理现象中的体积或模式。单个数据点不应该被计算在内,而是显示一个区域的情况和密度。简单但有效,可以快速给你的地图带来展现力。
Eurovision Shazam - 优雅的点密度图
分级统计图基于先前定义区域的统计数据。典型的例子是由选举区域划分的选举地图; 在这里,分级统计图是首选。一般来说,分级统计图代表两种类型的数据:空间的广泛度,比如人口,以及空间的密集,比如比例,密度和比例。
DirectRelief - 分级统计图表示的乌干达的疟疾发病率
对聚合数据进行可视化时,六边形图擅于用更含蓄但更结构化的形式来展现。例如,表示一般分布情况时,不是渲染出数万个点的散点图,而可以将点数填充为几百个六边形。
热点图本质上使用颜色作为数据可视化工具。该应用可以很好的处理多个变量,并可以在数据中显示类似的模式和相关性。
纽约市交通事故热点图 - 混合热点图与六边形图
设计中的考虑
点密度图依赖聚类方法,因此分割数据时必须确定适当的值。我通常使用Jenks优化方法来计算和组合最佳值,从而切换颜色或比例。在点密度图中,具有较多点的区域表示高浓度值,具有较少点的区域表示较低浓度值。我会使用范围,不透明度或颜色对这些变化进行可视化。
在设计分级统计图,六边形图以及热度图时,需要记住重要的两点:
1)较暗的颜色数值更高;
2)虽然有数以百万计种不同颜色,但是人眼只能轻易区分有限的颜色。因此一般来说,我只使用五到七种颜色类别。
有好几种制图时可选择的不同类型颜色种类。以下是我最喜欢的几个:
· 单色系列:颜色由所选颜色的暗色渐变到相同色调的浅色或白色。最暗的颜色代表数据集中最大的数字,最浅的色调代表最小的数字。
单色渐变
· 双极渐变:通常使用两个相反的色调来显示从负到中心到正的值变化。这些类型的地图显示了彼此相关值的大小。
双极渐变
· 部分光谱色调渐变:用于混合映射两组不同数据。这种技术融合了相邻的两种对手色调,并显示了混合数据类别的大小。
部分光谱色调渐变
对于色彩浓重的地图风格,我总会考虑最终成品的可行性。会是纯数字的还是可以打印或复印?颜色和混合是否面对色盲的问题?颜色可以大大增强制图者与看图者之间的交流,但失败的配色可能导致图既不有效也不吸引人。记住,往往越简洁越好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10