京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用数据讲述最好的故事:如何做出赏心悦目的数据可视化
当设计地图时,我会想:我想让观看者如何阅读地图上的信息?我想让他们一目了然地看出地理区域的测量结果变化吗?我想要显示出特定地区的多样性吗?或者我想要标明某个区域内的高频率活动或者相对的体积/密度?
有多种方法可以在地图中快速而集中的呈现出可视化数据。我常用的几个是:
·Dot density (点密度图)——使用点或其他符号展示特征或现象的集体情况(密度)的地图样式。例如,显示区域内的交集或高/低活动量。
·Choropleth (分级统计图)——这是一种主题地图样式,它根据地图上显示的数据强度,对应的展现在阴影颜色或图案纹理上。例如,显示人口密度或人均收入。
· Hexagonal binning / hexbin (六边形图)——这种地图的风格适合显示地理上的一般主题。在choropleth地图中,它的颗粒比 dot density密度小,不受边界约束。
· Heatmap (热度图)——这种地图使看地图的人能够在缩放因子中独立地感知点密度。也是最不受约束的,因为它不符合地理范围。
举例
当对点数据进行可视化时,点密度图是有效的,通常用于展现活动,特征和其他地理现象中的体积或模式。单个数据点不应该被计算在内,而是显示一个区域的情况和密度。简单但有效,可以快速给你的地图带来展现力。
Eurovision Shazam - 优雅的点密度图
分级统计图基于先前定义区域的统计数据。典型的例子是由选举区域划分的选举地图; 在这里,分级统计图是首选。一般来说,分级统计图代表两种类型的数据:空间的广泛度,比如人口,以及空间的密集,比如比例,密度和比例。
DirectRelief - 分级统计图表示的乌干达的疟疾发病率
对聚合数据进行可视化时,六边形图擅于用更含蓄但更结构化的形式来展现。例如,表示一般分布情况时,不是渲染出数万个点的散点图,而可以将点数填充为几百个六边形。
热点图本质上使用颜色作为数据可视化工具。该应用可以很好的处理多个变量,并可以在数据中显示类似的模式和相关性。
纽约市交通事故热点图 - 混合热点图与六边形图
设计中的考虑
点密度图依赖聚类方法,因此分割数据时必须确定适当的值。我通常使用Jenks优化方法来计算和组合最佳值,从而切换颜色或比例。在点密度图中,具有较多点的区域表示高浓度值,具有较少点的区域表示较低浓度值。我会使用范围,不透明度或颜色对这些变化进行可视化。
在设计分级统计图,六边形图以及热度图时,需要记住重要的两点:
1)较暗的颜色数值更高;
2)虽然有数以百万计种不同颜色,但是人眼只能轻易区分有限的颜色。因此一般来说,我只使用五到七种颜色类别。
有好几种制图时可选择的不同类型颜色种类。以下是我最喜欢的几个:
· 单色系列:颜色由所选颜色的暗色渐变到相同色调的浅色或白色。最暗的颜色代表数据集中最大的数字,最浅的色调代表最小的数字。
单色渐变
· 双极渐变:通常使用两个相反的色调来显示从负到中心到正的值变化。这些类型的地图显示了彼此相关值的大小。
双极渐变
· 部分光谱色调渐变:用于混合映射两组不同数据。这种技术融合了相邻的两种对手色调,并显示了混合数据类别的大小。
部分光谱色调渐变
对于色彩浓重的地图风格,我总会考虑最终成品的可行性。会是纯数字的还是可以打印或复印?颜色和混合是否面对色盲的问题?颜色可以大大增强制图者与看图者之间的交流,但失败的配色可能导致图既不有效也不吸引人。记住,往往越简洁越好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17