京公网安备 11010802034615号
经营许可证编号:京B2-20210330
微访谈 ▏关于CDA考试,我有一个不成熟的小建议
汪*星
LEVEL 1 业务数据分析师状元
本科就读于武汉大学预防医学营养与卫生统计学方向;硕士就读于南京大学地理与海洋科学学院自然地理学,目前为在读研究生。
目前做哪些工作?
目前的研究课题为地球化学数据分析。
有哪些记忆深刻的工作经历?
比较深刻的工作经验主要有两个时期:
本科对武汉市中心城区和远城区营养调查数据的分析,分析两类人群的居民营养与健康现状,差异以及原因,并提出改善建议;
读研期间针对野外采集的南极雪冰化学数据进行分析,反演地球气候与环境历史,现状,并预测未来,在全球变暖背景下提出一些有利于人类可持续发展的环境举措。
报考CDA认证考试的原因?
在对未来的职业规划时,根据自己的优势与特长以及未来的发展趋势,定位为商业数据分析,进而了解到CDA。报考CDA认证考试的原因是为转行提供一块敲门砖。
您个人的职业发展规划是?
对自己个人未来的职业规划主要分三步:
1、首先从互联网、金融或电商的业务数据分析师做起;
2、然后进一步学习R,Python等数据分析工具,数据挖掘和机器学习等相关知识和技能,深入对行业的理解,达到数据挖掘师的层次;
3、最后向数据科学家这个终极目标迈进。
如何更高效的复习?
以下是采访期间,当问及有哪些学习方法和经验能跟学弟学妹们分享,帮助学弟学妹能更好的学习和复习时?汪*星这样说道:
1、首先认证机构指定的三本教材最契合CDA level 1认证考试的考纲,所以需要深入研读(但是要以第一本和第三本为主)。
2、另外可以对每个知识块阅读相应的书籍,以利于打下扎实的基础。推荐如下书籍:《商务与经济统计》、《深入浅出数据分析》、《SQL必知必会》、《使用多元统计分析》、《数据挖掘导论》。
3、文字学习与案例和操作题相结合,可加深知识点的理解和技能的掌握以及灵活运用,这样学习效率更高。
总体来说CDA level 1并不是很难,这一届考试结果显示通过率为69%,只要大家用心去学问题不大。
最后,为了帮你能有针对性地准备考试,根据考试大纲的要求安排复习计划,这里有一份最新版的考试大纲——CDA 1级 考试大纲。
作为CDA数据分析一级认证考试命题的规范性文件和标准。可以帮你指明考试范围,简要地指出CDA考试的知识点,根据大纲就可以快速得看出考试侧重考试方向,明确复习方向和考试要求,从而提高备考效率,为顺利通过考试奠定坚实的基础。
下载 CDA1 级考试大纲,认真学习和备考,掌握数据分析的基础知识和技能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23