
SAS编程之ods和option的常用语句
上周因为一个ods的语句不会写,所以特地查了obs语句的使用,觉得obs还是挺好用的。
介绍一个sas的输出分为三种窗口。
1、 日志窗口。
2、 输出结果窗口
3、 图形窗口。
我的sas没办法画图,这个窗口我就不贴图了。
Ods语句就是关于输出结果窗口的。接下来我就几个常用的ods语句介绍一下用法,主要是实现结果窗口转化成数据集或者其他格式。一下是ods参数的介绍:
Listing 字符文本在output窗口显示,图形在graph1窗口显示
Result 输出结果在结果窗口显示(没有写ods的时候这个功能是默认存在的。)
Output把output窗口的显示内容(输出对象)转换成sas数据集。(这个功能最常用。)
Html把output窗口的显示内容(输出对象)转换成Html数据集。
Csvall把output窗口的显示内容(输出对象)转换成含有逗号的标识语言文件。
Rtf把output窗口的显示内容(输出对象)转换成rtf数据集。
Pdf把output窗口的显示内容(输出对象)转换成pdf数据集。
Output窗口就是结果输出窗口。
1 结果输出窗口的内容输出到sas数据集。
这个功能对于我来说简直就是再生父母啊,因为建模的时候经常要写一个宏循环,宏循坏要通过过程的参数判断。
procunivariatedata=sashelp.class ;
varage;
run;
这个过程是比较常用的。比如你要知道一个序列的t检验结果,那你发现如果输入以上的代码的时候其实t检验的结果是在结果输出窗口的,你想拿出来用,怎么拿。这时候,你可以把代码写成下面这样子的。大部分proc过程步在data后面都可以接out语句,但是有时候我就觉得我就不知道这个out语句out的是不是我要的东西。
procunivariatedata=sashelp.classouttable=aa;
varage;
run;
如果使用ods可以像以下这么操作。
1、 ods trace on语句.
这个语句的功能就是判断结果输出窗口中的各个小框里面的在转化成数据集的时候叫什么名字。输入以下代码:
odstraceon;
procunivariatedata=sashelp.classouttable=aa;
varage;
run;
在日志窗口会显示这样子:
正常情况下默认的是odstraceoff;即这个功能是关闭,在日志里面是看不到这些。看上图,假设你要的是位置检验:
就是这个图的内容,那么找到标签是位置检验,记下他的名称或者路径都可以,写一下代码:
odstraceon;
odsoutputTestsForLocation=dd;
procunivariatedata=sashelp.classouttable=aa;
varage;
run;
or
odstraceon;
odsoutputUnivariate.Age.TestsForLocation=dd;
procunivariatedata=sashelp.classouttable=aa;
varage;
run;
都可以把位置检验的这个图输出到sas数据集。所有的过程步都可以这么干的。
以上就是我常用的关于ods比较常用的两个功能。其他的关于ods的可以参考姚志勇的《sas编程与数据挖掘商业案例》的第137页。
2 将结果输出窗口中的内容输出到特定的文件中。
输入以上这个代码。在路径下面就会产生一个html的文件。解析一 下这个程序。
odslistingclose;这里listing其实可有可无,如果头尾不加listing,只是在结果输出窗口哪里也会有结果而已。所以上面这个代码主要来介绍一下html,因为输出的是html文件,所以首先要指定路径“odshtmlfile="C:\Users\Administrator.53HMKHKEAFZ58WJ\Desktop\data\test.html";”,跑完程序之后要关掉这个功能,不然你后面有结果的还是会输出到html窗口。介绍了了一个html的功能之后,其实后面的pdf csvall rtf都是同样的套路。看下输出的结果(有点丑):
2、第二部分就是介绍option.option介绍的是放在过程步前面的。
obs:表示需要处理的最后一行observation,如果指定其为max,就表示处理到最后一条observation。这个用法经常在数据比较多,前期调试代码的时候使用的, 只是调试代码,但是不用全量跑,就可以用这个设置“options obs=1000”,等到调试完完了之后要改回来“options obs=max”,不然还是跑1000条。
firstobs:表示需要从第几行observation开始处理,默认是从第一条开始。
msglevel:默认值是N,仅打印日志中的notes,warnings和error信息,如果设为I,再打印附属信息,包括索引的使用,合并处理,排序等附加信息
errors:指定最多有多少错误可以在log中显示,例如“options error=50”;
macrogen:将宏扩展的结果显示在日志里面
compress:是否采用压缩格式存储数据集
missing:指定用于替换missing value的字符,不设置的时候是“.”,如果这个字符的话貌似是没有用的,只能针对字符,譬如“options missing=5”那么在数据集显示的null的数就是用5补充,但是5只是显示,实质上的是观测还是.。就是你如果要把null变成-0,那么还是if age=. Then age=-0;
replace/noreplace:如果dataset已经存在,指定是否覆盖
print/noprint:指定是否在output窗口输出,这个在跑循环的时候很好用,因为一旦是1000各变量都跑一循环,输出在结果输出窗口就会很多,这时候整个sas就会很卡,包括日志也是,当你的日志产生是很多的话,建议输出到外面用proc printto。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09