京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sas信用评分卡之衍生变量
在建模中,最基础就是变量,花费时间最多也是变量,变量要做三方面的事情,首先是衍生,其次是数据清洗,最后是数据处理。至于为什么要衍生,数据挖掘嘛,挖掘嘛,就是要把变量尽量挖到东西嘛。其实还有一个问题,就是如果停留在原先的变量的基础上,一直按照这些变量分析,假设某天这些变量效果不显著,毕竟客户会迁移的嘛,那这就尴尬了。所以无论在建模还是分析上,衍生变量都是开拓分析维度的好方法。今天的内容就是总结几个在做衍生变量上的方法,我也是在领导的悉心指导才摸索到衍生变量的方法,所以没事跟领导聊聊业务是好事。
那就以逻辑回归中的四类变量:1、二分类变量。2、无序多分类变量。3、有序多分类变量。4、连续变量。分享下小编的衍生变量。
1二分类变量
类似这种变量基层变量已经有了,譬如,是否有车,是否有房类似这种。在衍生的时候,会按照申请资料与其他资料交叉验证产生,譬如婚姻状况是否一致。这是比较容易想到的,其次对于一些大类的变量也可以,譬如是否有过担保,是否逾期,是否有过民事纠纷类似这种变量,变量本身就只有两种情况,一旦变量的两种情况逾期率或者说woe有大的跳跃的涨幅,变量的预测力指标都会相对大一些。
2无序多分类变量
无序多分类变量就是譬如,行业啊,城市这类变量。这些变量在基层数据中情况往往是很多的,毕竟行业也不可能是4种行业而已,所以对于这种变量的运用,第一步是先分类。至于怎么分,可以用bad rate把相似的归在一组,也可以用我之前在公众号发过的字符变量的最优分组。以上是对于情况比较多的无序多分类变量。另外一种是情况较少,譬如学历,你可能说学历是有序的,但是为了社会的发展与和谐,我还是认为学历是一个无序多分类变量,这类变量的哈,可以衍生出哑变量。是否为本科啊,是否高中生,转了一圈又是二分类了。
3有序多分类变量
这类变量其实跟上一类的变量很相似,都是字符变量,只是多了个顺序,譬如,一线城市,二线城市,三线城市,四线城市,无线城市。同样的还是可以衍生为哑变量。但是我我一直强调,哑变量都要在业务解释得过去的情况下使用。
4连续变量
这个变量我就不说什么,大部分的变量都是连续变量。这部分的衍生变量因为可以有很多种情况,我就不说了。
以上是根据变量类型简单的讲了一下一些你估计都知道的衍生变量的方式。接下来以几种数据类型分享下衍生变量的产生。
1、流水数据
这是我在网上随便找的一个类似的图,加入这是客户名下的一个收支数据。估计也拿不到这么详细的每天的数据,你就把天想成月就可以了。那么这里假设是最近7个月的收支情况。比较容易可以想到的是,总的支出,总的存入,以及平均的支出或者收入啊。其次呢,就是跟时间变量结合,最近一个月的支出,最近两个月的支出,最近一个月的收入,最近一个月的收入。我呢,还会衍生一类,最近一个月的收入占最近7个月的收入,最近一个月的支出占最近7个月的支出。我在上篇文章也说过,要是你有能耐,你还可以做最近7个月一个收支的标准差,检查客户收支情况的稳定性。因为客户的收支水平相差还是较多。假设现在这个数据是查询记录的话,还可以衍生出最近3次查询所花的时间这类变量。
2、 贷款信用卡资料。
查过自己简版征信的数据的可以看到,里面有你名下所有的信用卡以及贷款信息,就是说你几年前不还钱的事情,都在简版征信上告诉全世界,你之前欠钱拉,欠了多久都有说。
对于这部分数据,二分类的变量提及,是否有逾期,这是比较容易实现的。其次还有客户的额度的衍生变量,额度的平均值啊,额度的最大值,这时候在统计学上学到的所有能在数列上的指标就全部用上吧。然后呢,就是占比,最近一张卡的占全部额度的比例,当前一个月的使用额除以额度比率。最后,就是类似上一点说的查询记录那种,开了三张卡花了多少时间。
3、申请资料
关于申请资料,我比较热衷于组合变量的衍生变量,这部分数据维度说多不多,说少不少,真的要组合还是需要时间,所以为了效率的问题,挑选在业务上可以解释的变量组合。譬如婚姻状况和年纪组合,婚姻状况与房产组合啊类似这种。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29