京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2.假设检验的两类错误
注意事项:拒绝或无法拒绝假设,并不等于100%的正确;两类错误的概率相加并不一定等于1;样本量不变的情况下, ߙ与ߚ不能同时增大或减小(如下图)。
3.假设检验的基本思想及遵循这样的思想、步骤等过程对业务与数据分析流程的指导作用
假设检验的基本思想为验证性数据分析,强调先验理论在数据分析中的核心地位。从提出假设理论出发,到验证假设的 过程提示,数据分析理论的先导作用,所以业务流与假设检验的步骤可以大体概括如下:
(1)建立原假设成立,确定业务需求,明确目的;
(2)确定小概率事件的界值,概率界值在不同行业中通用;
(3)获取样本,收集或调查数据;
(4)选择检验的方法。选择具体的统计方法; (5)确定 P 值,根据原需求和数据得出结论,需求目的是否得到支持。 所以可以看出,业务流程的数据分析与假设检验的流程是一致的。
一个总体,总体均值的假设检验,总体正态,总体方差已知,可以用样本均值的标准误差,按正态分布计算临界比率。
一个总体,总体均值的假设检验,总体为非正态分布,总体方差未知,大样本。原则上用非参数检验;n的样本量较大 (n大于等于30 或50),服从近似正态分布(总体已知)。
t 统计量的函数形式
一个总体,总体均值的假设检验,总体正态,总体方差未知,小样本(通常是指小于30)。
利用 P 值进行检验
P值是一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率,可以表示对原假设的支持程度,是 用于确定是否应该拒绝原假设的一种方法,当 P 值小于显著性水平的时候,就需要拒绝原假设,否则就无法拒绝原假设。
左侧检验的 P 值为检验统计量 X 小于样本统计值 C 的概率,即:P = P{ X < C}
1.单侧检验
(以右侧检验为例)P 值为样本统计值 X(将样本值代入检验统计量中的计算结果)右侧的面积(概率)。
2.双侧检验
P值为样本统计值的绝对值右侧的面积的两倍。
两个独立样本t检验(小样本)
用于检验两样本是否来自相同均值的总体。
1.如果没有理论、业务向导或也没有假设条件的情况下( )。
A. 这样有违数据分析的逻辑,不能分析
B. 可以进行探索性数据分析,了解数据情况
C. 需要选择比较准确的模型才可以做数据分析
D. 以上都不对
答案:B 解析:数据分析分为验证性数据分析和探索性数据分析,验证性数据分析是传统数据分析的主要 分析方法论,但探索性数据分析在先验假设不明确的情况下使用。
2.t检验统计量的适用条件判断( )。
A. 样本为小样本,并且总体方差已知
B. 样本为大样本,并且总体方差已知
C. 样本为小样本,并且总体方差未知
D. 样本为大样本,并且总体方差未知
答案:C 解析:C项符合,需要记住 t 检验的适用条件。
3.下列适合用 t 检验的有( )。
A. 比较某种化肥改良后,能否有助于提高某种农作物的产量
B. 判断商品质量(如添加剂)是否达标
C. 判断不同学历(如本科、硕士、博士)的收入差别
D. 检验不同性别的同学在英语成绩上是否有显著差异
答案:ABD 解析:t 检验的应用题,A项可以使用配对样本t检验,B项可以使用单样本t检验,D 项可以使用独立样本t检验,C项需要使用方差分析。本题是需要将t检验条件转化成 实际问题加以解决。
4.如果原假设 H0 为真,所得到的样本结果会像实际预测结果那么极端或更极端的概率称为( )。 A. 临界值
B. 统计量
C. P 值
D. 事先给定的显著性水平
答案:C 解析: P 值的概念理解。
5.某产品的次品率为0.17,现对此产品进行新工艺试验,从中抽取400件检验,发现有次品56件,能否认为此项新工 艺提高了产品的质量(α=0.05)。对于这个问题,正确的原假设是( )。 【注:P为次品率】
A.P≥0.17
B. P<0.17
C. P>0.17
D. P=0.17
答案:A 解析:参照假设检验的基本原理,一般认为如果提高了产品质量,那么我们要拒绝原假设,所以原 假设因为采用新工艺后次品率大于0.17的假设。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26