
SPSS分析技术:裁判(打分者)的信度分析
奥运会的很多比赛项目都是通过裁判的打分来决定名次的归属,例如,跳水,花样游泳,体操等项目。为了比赛的公平,奥运会的组委会会以合适的比例选择来自不同地区和国家的裁判组成裁判小组,避免裁判有意识或无意识的倾向于来自于同一地区或国家的运动员。除了这样人为安排以外,有没有数据分析技术从数据的角度对裁判的打分进行监督和评价,从而保证比赛公平呢?其实是有的,这就是评分者的信度分析。
评分者信度分析
评分者信度分析是指多个评分者对同一批受考核者进行评分时的一致性程度。在日常工作中,政治教师阅卷,评委打分之类的难免受到主观因素影响,如何评判他们的评分是否公正合理,这就需要用到评分者信度分析。
评分者信度考察采用相关分析。如果评分者是两人,可以采用Pearson或Spearman等级相关;如果评分者是三人及以上,并且采用等级评分方式,可以采用Kendall协同系数来分析。Kendall协同系数的公式为:
协同系数W表示变量之间的协同程度,取值在0~1之间,W越接近于1,表示变量之间的差异性越大,说明裁判的打分差异显著。SPSS将自动计算W,并给出对应的相伴概率值,如果相伴概率值小于或等于显著性水平α,则拒绝零假设,认为裁判打分越不一致,反之,则认为打分标准一致。
范例分析
现在有一份某届奥运会8位裁判对200名运动员的打分数据资料。根据这些数据分析这8位裁判的打分标准是否公平。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
选择菜单【分析】-【非参数检验】-【旧对话框】-【K个相关样本】,在打开的对话框中按照下图输入信息;在检验类型中,选择Kendall W,点击【确定】。
结果解读
左边的等级表格展示8位裁判在对200名运动员进行打分时,每位裁判的打分分数在所有裁判中的平均排名,可以发现8位裁判分成三类,A裁判和H裁判打分比较一致,给分比较客观;B裁判、D裁判和F裁判的打分一致性高,分数给得较低;剩下的C裁判、E裁判和G裁判结为一类,给的分数较高。右侧的检验统计表格显示了W系数为0.580,说明裁判之间的打分差异性比较大,这个结论也可以从显著性水平为0.000得出。
我们可以将B裁判、D裁判和F裁判的打分数据再进行一次K关联样本的非参数检验,得出的结果如下图所示:
从这个结果可以印证我们上面的结论,从等级表格可以知道,三位裁判打分的平均排名是差不多的。Kendall W系数为0.000,说明三位裁判的打分差异很小,显著性水平为0.000,也说明了三位裁判的打分差异性很小,一致性很高。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08