京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:裁判(打分者)的信度分析
奥运会的很多比赛项目都是通过裁判的打分来决定名次的归属,例如,跳水,花样游泳,体操等项目。为了比赛的公平,奥运会的组委会会以合适的比例选择来自不同地区和国家的裁判组成裁判小组,避免裁判有意识或无意识的倾向于来自于同一地区或国家的运动员。除了这样人为安排以外,有没有数据分析技术从数据的角度对裁判的打分进行监督和评价,从而保证比赛公平呢?其实是有的,这就是评分者的信度分析。
评分者信度分析
评分者信度分析是指多个评分者对同一批受考核者进行评分时的一致性程度。在日常工作中,政治教师阅卷,评委打分之类的难免受到主观因素影响,如何评判他们的评分是否公正合理,这就需要用到评分者信度分析。
评分者信度考察采用相关分析。如果评分者是两人,可以采用Pearson或Spearman等级相关;如果评分者是三人及以上,并且采用等级评分方式,可以采用Kendall协同系数来分析。Kendall协同系数的公式为:
协同系数W表示变量之间的协同程度,取值在0~1之间,W越接近于1,表示变量之间的差异性越大,说明裁判的打分差异显著。SPSS将自动计算W,并给出对应的相伴概率值,如果相伴概率值小于或等于显著性水平α,则拒绝零假设,认为裁判打分越不一致,反之,则认为打分标准一致。
范例分析
现在有一份某届奥运会8位裁判对200名运动员的打分数据资料。根据这些数据分析这8位裁判的打分标准是否公平。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
选择菜单【分析】-【非参数检验】-【旧对话框】-【K个相关样本】,在打开的对话框中按照下图输入信息;在检验类型中,选择Kendall W,点击【确定】。
结果解读
左边的等级表格展示8位裁判在对200名运动员进行打分时,每位裁判的打分分数在所有裁判中的平均排名,可以发现8位裁判分成三类,A裁判和H裁判打分比较一致,给分比较客观;B裁判、D裁判和F裁判的打分一致性高,分数给得较低;剩下的C裁判、E裁判和G裁判结为一类,给的分数较高。右侧的检验统计表格显示了W系数为0.580,说明裁判之间的打分差异性比较大,这个结论也可以从显著性水平为0.000得出。
我们可以将B裁判、D裁判和F裁判的打分数据再进行一次K关联样本的非参数检验,得出的结果如下图所示:

从这个结果可以印证我们上面的结论,从等级表格可以知道,三位裁判打分的平均排名是差不多的。Kendall W系数为0.000,说明三位裁判的打分差异很小,显著性水平为0.000,也说明了三位裁判的打分差异性很小,一致性很高。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08