
背景介绍
企业想要在竞争激烈的市场中胜出,决策的速度和反应的效率尤为重要。根据调查显示,75%的企业在面临拟定策略时,常常无法获得实时且有根据的决策信息。什么样的数据、要透过什么样的方法,才能快速且实时的转变成决策时有用的信息,是现代企业所面临最迫切性的问题。数据挖掘(Data Mining)无疑是解决这些问题最有效的途径。数据挖掘强调与现有信息系统的整合,以提供决策者做决策时所需的情报,或转化成经营智慧,以作为调整营运策略方针的辅助工具。从顾客关系管理(Customer Relationship Management)的整体架构来说,数据挖掘是整个顾客关系管理的核心。
完整的数据挖掘不单可以做到准确的目标市场营销(Target Marketing),也可以做到大量的客制化,也就是所谓的一对一营销(One-to-One Marketing)。有鉴于此,本课程的目的就是要针对数据挖掘整套流程,以金融、电信、电商和零售业为案例背景,结合SPSS MODELER+WEKA深入讲授数据挖掘的主要算法,让学员胜任全方位的数据挖掘运用场景。
课程安排
项目名称 | CDA LEVELII 建模分析师_SPSS Modeler专题 |
时间 |
北京:2016年4月15-24日,6天
上海:2016年5月6-15日,6天 深圳:2016年5月20-29日,6天 |
地点 |
面授班:北京,培训教室
上海,铁道宾馆 深圳,科技园
远程班:在线同步直播
|
价格(元) |
面授:5900元
远程:4400元
|
优惠 |
1. 全日制学生及CDA LEVEL Ⅰ老学员8折优惠(学生证证明文件) 2. 同一单位三人及以上报名9折优惠,五人及以上8折优惠 以上优惠不可叠加! |
证书认证 |
1. 可自愿申请《数据分析师》证书,费用400元
2. 可申请报考《CDA建模分析师认证证书》(荐:含金量高) 报考网址:http://exam.cda.cn/ 以上双证皆自愿申请 |
现场班福利 |
全套视频资料,终身学习,在线答疑 ,咖啡茶歇,论坛币(1000个) |
课程收益
(1)了解什么是顾客关系管理;(2)了解顾客关系管理系统的架构及其组成元素;(3)了解如何利用顾客关系管理系统来进行营销活动;(4)了解什么是数据挖掘(Data Mining);(5)掌握数据挖掘技术的功能分类;(6)掌握数据挖掘技术的绩效增益;(7)了解数据挖掘技术的产业标准;(8)掌握如何利用数据挖掘技术来筛选关键变量(Key Attribute);(9)掌握如何利用数据挖掘技术来进行交叉销售(Cross-Selling);(10)掌握如何利用数据挖掘技术来评估客户的信用风险(Credit Risk); (11)了解如何利用数据挖掘技术来分析顾客行为、产生商业智慧并发展营销策略。(12)掌握如何使用数据挖掘工具SPSS Modeler/WEKA来完成上述的各项工作。
学员对象
1)各行业数据分析、数据挖掘从业者
2)金融、电信、零售、医学等各行业业务数据分析人员
3)政府事业单位大数据及数据挖掘项目人员
4)数据挖掘岗位就业、提拔涨薪、技能优化等从业人员
5)对数据挖掘感兴趣的各界人员
详细大纲
时间(6天) |
北京:2016年4月15-24日 上海:2016年5月06-15日 深圳:2016年5月20-29日 |
主题 |
以企业场景、真实案例教学方式,利用SPSS MODELER和WEKA两个工具来贯穿数据挖掘建模的整个内容,包括基础、算法、建模、进阶、模型优化、应用等。 |
应用范围 |
《营销活动及信用风险控制》 《企业如何处理原始数据》 《如何根据业务选取有效变量》 《如何建立交叉销售模型》 《如何建立信用评分模型》 《如何进行模型优化》 《企业如何建立预测模型》 《客户分群精准化营销》 |
算法理论 |
KDD、CRISP DM—数据处理—统计检验—决策树、罗吉斯回归、包装法—贝氏网络—神经网络—支持向量机—随机森林—聚类分析—关联分析—序列分析 |
案例操作 |
【营销客户分群】【银行风险预测】【网站行为关联分析】【商品关联规则】【交叉销售】【客户流失预警】【天气预测】【药物治疗】【疾病诊断】【零售购物篮组合】【银行金融产品序列分析】 |
李御玺,教授,国立台湾大学资讯工程博士,铭传大学资讯工程学系教授,铭传大学大数据研究中心主任,中华数据挖掘协会理事,云南财经大学信息学院客座教授,浙江大学城市学院客座教授,厦门大学数据挖掘中心顾问,中国人民大学数据挖掘中心顾问,IBM SPSS-China顾问,SAS-Taiwan顾问。在其相关研究领域已发表超过260篇以上的研究论文,同时也是国科会与教育部多个相关研究计划的主持人。
服务过的客户包括:中国工商局、中信银行、台新银行、联邦银行、新光银行、 新竹国际商业银行(现已并入渣打银行)、第一银行、永丰银行、远东银行、美商大都会人寿、嘉义基督教医院、台湾微软、零售业如赫莲娜(Helena Rubinstein)化妆品公司、特立和乐(HOLA)公司、航空公司如东方航空公司、中华航空公司、汽车行业如福特(Ford)汽车公司;政府行业如国税局等。
资格认证
CDA LEVEL Ⅱ资格认证证书
报名流程
1.在线填写报名信息
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21