2020-12-20
阅读量:
2761
如何辨别统计中的拖尾和截尾?
在sas软件中,我们可以通过得到的自相关函数图和bai偏相关函数图来判断。
如果样本自相关系数和样本偏自相关系数在最初的阶明显大于2倍标准差,而后几乎95%的系数都落在2倍标准差的范围内,且非零系数衰减为小值波动的过程非常突然,通常视为k阶截尾;
如果有超过5%的样本相关系数大于2倍标准差,或者非零系数衰减为小值波动的过程比较缓慢或连续,通常视为拖尾。
相关示例
AR模型:自相关系数拖尾,偏自相关系数截尾;
MA模型:自相关系数截尾,偏自相关函数拖尾;
ARMA模型:自相关函数和偏自相关函数均拖尾。
根据统计图形和数据判断
根据输出结果,自相关函数图拖尾,偏自相关函数图截尾,且n从2或3开始控制在置信区间之内,因而可判定为AR(2)模型或者AR(3)模型。
这张图可以看到,很明显的自相关和偏自相关都是拖尾,因为数据到后面还有增大的情况,没有明显的收敛趋势。
如果图片成这样,估计十有八九是一个ARMA模型了。自相关7阶拖尾(n从7开始缩至置信区间),偏自相关2阶拖尾。






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
0条评论