热线电话:13121318867

登录
2020-06-06 阅读量: 978
什么是损失函数?

损失函数:是一个评估指标,来衡量参数为 的模型拟合训练集时产生的信息损失的大小,并以此衡量参数的优劣。
损失函数小,模型在训练集上表现优异,拟合充分,参数优秀。
损失函数大,模型在训练集上表现差劲,拟合不足,参数糟糕。
我们追求,能够让损失函数最小化的参数组合。
注意:没有”求解参数“需求的模型没有损失函数,比如KNN,决策树。



θ表示求解出来的一组参数,m是样本的个数, yi 是样本 i 上真实的标签, yθ(xi)是样本 i 上,基于参数θ计算出来的逻辑回归返回值,xi 是样本 i 各个特征的取值。我们的目标,就是求解出使 J(θ)最小的 θ 取值。注意,在逻辑回归的本质函数y(x)里,特征矩阵x是自变量,参数是 θ。但在损失函数中,参数θ是损失函数的自变量,x和y都是已知的特征矩阵和标签,相当于是损失函数的参数。不同的函数中,自变量和参数各有不同,因此在数学计算中,尤其是求导的时候避免混淆。

24.6406
5
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子