2020-03-19
阅读量:
747
KNN和Kmeans 好像有点像
这两种算法之间的根本区别是,Kmeans本质上是无监督学习而KNN是监督学习。Kmeans是聚类算法,KNN是分类(或回归)算法。Kmeans算法把一个数据集分割成簇,使得形成的簇是同构的,每个簇里的点相互靠近。该算法试图维持这些簇之间有足够的可分离性。由于无监督的性质,这些簇没有任何标签。KNN算法尝试基于其K(可以是任何数目)个周围邻居来对未标记的观察进行分类。它也被称为懒惰学习法,因为它涉及最小的模型训练。因此,它不用训练数据对未看见的数据集进行泛化。

相似点:都包含这样的过程,给定一个点,在数据集中找离它最近的点。即二者都用到了NN(Nears Neighbor)算法,一般用KD树来实现NN。






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
0条评论