df表详情如下: 要求计算所有人单笔销售额最大的两单的加和值参考代码:np.random.seed(0)df = pd.DataFrame( {'name': ["Allen","Tom","Alice","Lucy","Han","Allen","Tom","Alice","Lucy","Han","Allen","Tom","Alice","Lucy","Han"],
df表详情如下: 请统计每个国家的记录数。参考代码:np.random.seed(0)df = pd.DataFrame({'类别':['农作物','农作物','农作物','水果','水果','肉类','肉类'], '产地':['阿根廷','巴西','中国','中国','巴西','阿根廷','中国'], '品种':['玉米
df表详情如下: 请随机打乱原表记录行的顺序。参考代码:np.random.seed(0)df = pd.DataFrame({'类别':['农作物','农作物','农作物','水果','水果','肉类','肉类'], '产地':['阿根廷','巴西','中国','中国','巴西','阿根廷','中国'], '品种':['
df表详情如下: 请抽取df表中50%的记录。参考代码:np.random.seed(0)df = pd.DataFrame({'类别':['农作物','农作物','农作物','水果','水果','肉类','肉类'], '产地':['阿根廷','巴西','中国','中国','巴西','阿根廷','中国'], '品种':['
df表详情如下: 请删除“产地”和“数量”两列参考代码:np.random.seed(0)df = pd.DataFrame({'类别':['农作物','农作物','农作物','水果','水果','肉类','肉类'], '产地':['阿根廷','巴西','中国','中国','巴西','阿根廷','中国'], '品种':['
参考代码:list1 = [1,3,7,2,4,9,0]list1.sort() #排序list1list1 = [1,3,7,2,4,9,0]list1.reverse() #逆置list1代码结果:
df表详情如下: 请把性别列的文本字段编码成0和1参考代码:d = {"性别":["男", "女", "女","男"], "职级":["P3", "p3", "p4","p5"], "年龄":[24, 24, 27, 30]}df = pd.DataFrame(d)dfd = {"男": 0, "女": 1}df["性别1"] = df["性别"].map(d) df
df表详情如下: 请将销售额字段的所有元素的数据类型换成浮点型参考代码:d = {"品名":["A", "B", "C", "D", "E"], "销售额":[900, "1000", "$640", 730.60 ," $259.13"]}df = pd.DataFrame(d)dfdf["销售额"] = df["销售额"].replace("[$]", "", regex
df表详情如下: 请汇总所有国家各种类别出现的次数和总次数,实现效果如下: 参考代码:np.random.seed(0)df = pd.DataFrame({'类别':['农作物','农作物','农作物','水果','水果','肉类','肉类'], '产地':['阿根廷','巴西','中国','中国','巴西','阿根廷','中国'],
df表详情如下: 请计算每个销售人员每种产品的平均销售额,实现效果如下: 参考代码:np.random.seed(0)B = pd.Series(["Allen","Lucy","Tom","Alice","Tim","Lily","Allen","Lucy","Tom","Alice","Tim","Lily","Allen","Lucy","Tom","Alice","Tim"
df表如下: 请将df表汇总转化成下表: 参考代码:np.random.seed(0)B = pd.Series(["Allen","Lucy","Tom","Alice","Tim","Lily","Allen","Lucy","Tom","Alice","Tim","Lily"], dtype="string")C = pd.Series(np.random.randint(
df表如下: 要求统计表中缺失值的数量.参考代码:d = {"品名":["A", "B", "C", "D", "E","F","G","H"], "销售额":[900, "1000", np.nan, 730.60 ," 259.13",np.nan,502,"800"]}df = pd.DataFrame(d)dfdf.isnull().sum().sum()代码结果: