京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析的最终目的是实现帮助企业实现业务增长,在现阶段,原来的以生产为中心、以销售产品为目的的市场战略已经逐步被以客户为中心、以服务为目的的市场战略所取代。这也就意味着,那个企业能更好地掌握客户的需求趋势,加强与客户的关系,更有效地对客户资源进行挖掘和管理,那么这个企业就能在市场竞争中处于优势地位。细分客户群是企业向客户提供个性化体验的关键。客户细分向企业展示出相关客户的行为、习惯与偏好等信息,企业可以根据不同的客户群体提供量身定制的营销活动,从而改善客户体验。下面,就跟小编一起来看如何进行有效的客户细分吧。
一、客户细分的具体步骤
1.我们需要明确客户细分的目标。客户细分目标不同,方法也会有极大的差异性。通常客户细分目标一般包括:促进商品销售、提升转化率、设计针对性的产品与服务、改进服务体验、优化推广成本与投入效果等。
2.根据客户细分地目标确定我们需要的资源和方法。在资源和方法方面,我们经常会因为企业本身资源条件的限制以及数据分析方法的技术性问题受到一定程度的阻碍。
3.根据企业实际资源限制来选择适合的客户细分方法。结合企业的实际需求与限制条件,找到可行的,有效的方法,这也是开始客户细分探索的基础。
4.应用企业现有的有效数据。虽然企业现有的数据不一定是完备的,有效的,但是这些数据本身,可能也需要更为深入的处理以适应细分的方法。
5.分析细分指标的稳定性。一般来说,有效的客户细分是通过分层的多维指标交叉而获得的,但这并不是说越复杂越好,我们需要找到真正稳定和显性的细分指标。
6.描述细分客户群的特征。通常要求细分后的客户群体不仅能够清晰的描述,还可以应用可靠的方法进行识别。
7.将客户细分看成过程而不是结果。客户细分是个学习的过程,随着时代的进步、市场的变化,客户也会随之而成长,因此,我们需要不断调整和优化原本的客户细分。
二、客户细分需要注意的问题
1.客户细分指标不正确
.客户细分要求根据客户的属性,行为,需求,偏好以及价值等因素综合进行分类,我们在客户细分过程中,不能只考虑单一指标。例如,按照客户资产进行细分,有钱的就是优质客户,没钱的就不是优质客户。或者按照自然时间细分,老客户就是好客户,而新客户就只给很少的优惠等等。
2.盲目复制他人细分
每个行业的情况都大不相同,每个企业也都有自己独特的经营模式和思路,那么这就意味着实现客户价值的能力和效率也会不同。加入我们直接照搬照抄其他企业的客户细分方案,就有可能会花费更高昂的成本去服务客户,甚至还可能导致相反的结果。我们在进行客户细分研究的时候,必须考量实际企业客户的具体情况、细分客户群服务能力等指标,审慎地提交客户细分方案。
3.为细分而细分,细分客户群后没有具体的行动方案
有些企业细分客户群体后,并没有采取针对化的措施,对不同的客户细分群体实施不同的经营活动方案,客户细分只流于表面形式。企业做客户细分的最终目的是发展和盈利。在客户细分后,必须要有相对应的营销举措,才能将客户细分的价值发挥出来,实现业务的增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24