今天跟大家介绍的是SVM算法原理以及实现,废话不多说,直接来看干货吧!
一、SVM概念
SVM的全称为Support Vector Machine,也就是我们经常提到的支持向量机,主要被用来解决模式识别领域中的数据分类问题,是一种有监督学习算法。
具体解释一下:
Support Vector,支持向量,指的是训练样本集中的某些训练点,这些训练点非常靠近分类决策面,因此是最难分类的数据点。SVM中最优分类标准为:这些点与分类超平面之间的距离达到最大值;
Machine“机”,指的是机器学习领域对一些算法的统称,通常我们把算法看做一个机器或学习函数。SVM是一种有监督的学习方法,主要是针对小样本数据的学习、分类和预测。
二、SVM的优点
1、需要的样本数量不是很大,但这并不表示SVM训练样本的绝对量很少,只是说与其他训练分类算法相比,在同样的问题复杂度情况下,SVM对样本的需求相对是较少的。而且SVM引入了核函数,因此即使是高维的样本,SVM也能轻松应对。
2、结构风险最小。这种风险指的是分类器对问题真实模型的逼近,以及问题真实解之间的累积误差。
3、非线性,指的是:SVM非常擅长应付样本数据线性不可分的情况,通常是利用松弛变量(或者叫惩罚变量)以及核函数技术来实现的,这也是SVM的精髓所在。
三、SVM的原理
1.点到超平面的距离公式
超平面的方程也可以写成一下形式:
假设P(x1.x2...xn)为样本的中的一个点,其中xi表示为第个特征变量。那么该点到超平面的距离d就可以用如下公式进行计算:
其中||w||为超平面的2范数,也就是w向量的模长,常数b类似于直线方程中的截距。
2.最大间隔的优化模型
其中y代表数据点的标签,并且其为-1或1.若数据点在平面的正方向(也就是+1类),那么就是一个正数,而如果数据点在平面的负方向的情况下(即-1类),仍然是一个正数,这样就可以保证始终大于0了。我们需要注意,如果w和b等比例放大,d的结果不会改变。令u=y(wTx+b),所有支持向量的u为1.那么其他点的u大于1.我们可以通过调节w和b求到。这样一来,上面的问题可以简化为:
等价替换为:
这是一个有约束条件的优化问题,我们通常会用拉格朗日乘子法来求解。令:
四、python实现
#svm算法的实现 from numpy import* import random from time import* def loadDataSet(fileName):#输出dataArr(m*n),labelArr(1*m)其中m为数据集的个数 dataMat=[];labelMat=[] fr=open(fileName) for line in fr.readlines(): lineArr=line.strip().split('\t')#去除制表符,将数据分开 dataMat.append([float(lineArr[0]),float(lineArr[1])])#数组矩阵 labelMat.append(float(lineArr[2]))#标签 return dataMat,labelMat def selectJrand(i,m):#随机找一个和i不同的j j=i while(j==i): j=int(random.uniform(0,m)) return j def clipAlpha(aj,H,L):#调整大于H或小于L的alpha的值 if aj>H: aj=H if aj<L: aj=L return aj def smoSimple(dataMatIn,classLabels,C,toler,maxIter): dataMatrix=mat(dataMatIn);labelMat=mat(classLabels).transpose()#转置 b=0;m,n=shape(dataMatrix)#m为输入数据的个数,n为输入向量的维数 alpha=mat(zeros((m,1)))#初始化参数,确定m个alpha iter=0#用于计算迭代次数 while (iter<maxIter):#当迭代次数小于最大迭代次数时(外循环) alphaPairsChanged=0#初始化alpha的改变量为0 for i in range(m):#内循环 fXi=float(multiply(alpha,labelMat).T*\ (dataMatrix*dataMatrix[i,:].T))+b#计算f(xi) Ei=fXi-float(labelMat[i])#计算f(xi)与标签之间的误差 if ((labelMat[i]*Ei<-toler)and(alpha[i]<C))or\ ((labelMat[i]*Ei>toler)and(alpha[i]>0)):#如果可以进行优化 j=selectJrand(i,m)#随机选择一个j与i配对 fXj=float(multiply(alpha,labelMat).T*\ (dataMatrix*dataMatrix[j,:].T))+b#计算f(xj) Ej=fXj-float(labelMat[j])#计算j的误差 alphaIold=alpha[i].copy()#保存原来的alpha(i) alphaJold=alpha[j].copy() if(labelMat[i]!=labelMat[j]):#保证alpha在0到c之间 L=max(0,alpha[j]-alpha[i]) H=min(C,C+alpha[j]-alpha[i]) else: L=max(0,alpha[j]+alpha[i]-C) H=min(C,alpha[j]+alpha[i]) if L==H:print('L=H');continue eta=2*dataMatrix[i,:]*dataMatrix[j,:].T-\ dataMatrix[i,:]*dataMatrix[i,:].T-\ dataMatrix[j,:]*dataMatrix[j,:].T if eta>=0:print('eta=0');continue alpha[j]-=labelMat[j]*(Ei-Ej)/eta alpha[j]=clipAlpha(alpha[j],H,L)#调整大于H或小于L的alpha if (abs(alpha[j]-alphaJold)<0.0001): print('j not move enough');continue alpha[i]+=labelMat[j]*labelMat[i]*(alphaJold-alpha[j]) b1=b-Ei-labelMat[i]*(alpha[i]-alphaIold)*\ dataMatrix[i,:]*dataMatrix[i,:].T-\ labelMat[j]*(alpha[j]-alphaJold)*\ dataMatrix[i,:]*dataMatrix[j,:].T#设置b b2=b-Ej-labelMat[i]*(alpha[i]-alphaIold)*\ dataMatrix[i,:]*dataMatrix[i,:].T-\ labelMat[j]*(alpha[j]-alphaJold)*\ dataMatrix[j,:]*dataMatrix[j,:].T if (0<alpha[i])and(C>alpha[j]):b=b1 elif(0<alpha[j])and(C>alpha[j]):b=b2 else:b=(b1+b2)/2 alphaPairsChanged+=1 print('iter:%d i:%d,pairs changed%d'%(iter,i,alphaPairsChanged)) if (alphaPairsChanged==0):iter+=1 else:iter=0 print('iteraction number:%d'%iter) return b,alpha #定义径向基函数 def kernelTrans(X, A, kTup):#定义核转换函数(径向基函数) m,n = shape(X) K = mat(zeros((m,1))) if kTup[0]=='lin': K = X * A.T #线性核K为m*1的矩阵 elif kTup[0]=='rbf': for j in range(m): deltaRow = X[j,:] - A K[j] = deltaRow*deltaRow.T K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab else: raise NameError('Houston We Have a Problem -- \ That Kernel is not recognized') return K class optStruct: def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters self.X = dataMatIn self.labelMat = classLabels self.C = C self.tol = toler self.m = shape(dataMatIn)[0] self.alphas = mat(zeros((self.m,1))) self.b = 0 self.eCache = mat(zeros((self.m,2))) #first column is valid flag self.K = mat(zeros((self.m,self.m))) for i in range(self.m): self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup) def calcEk(oS, k): fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b) Ek = fXk - float(oS.labelMat[k]) return Ek def selectJ(i, oS, Ei): maxK = -1; maxDeltaE = 0; Ej = 0 oS.eCache[i] = [1,Ei] validEcacheList = nonzero(oS.eCache[:,0].A)[0] if (len(validEcacheList)) > 1: for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E if k == i: continue #don't calc for i, waste of time Ek = calcEk(oS, k) deltaE = abs(Ei - Ek) if (deltaE > maxDeltaE): maxK = k; maxDeltaE = deltaE; Ej = Ek return maxK, Ej else: #in this case (first time around) we don't have any valid eCache values j = selectJrand(i, oS.m) Ej = calcEk(oS, j) return j, Ej def updateEk(oS, k):#after any alpha has changed update the new value in the cache Ek = calcEk(oS, k) oS.eCache[k] = [1,Ek] def innerL(i, oS): Ei = calcEk(oS, i) if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)): j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy() if (oS.labelMat[i] != oS.labelMat[j]): L = max(0, oS.alphas[j] - oS.alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) if L==H: print("L==H"); return 0 eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel if eta >= 0: print("eta>=0"); return 0 oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta oS.alphas[j] = clipAlpha(oS.alphas[j],H,L) updateEk(oS, j) #added this for the Ecache if (abs(oS.alphas[j] - alphaJold) < 0.00001): print("j not moving enough"); return 0 oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j] b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j] if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2 else: oS.b = (b1 + b2)/2.0 return 1 else: return 0 #smoP函数用于计算超平的alpha,b def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #完整的Platter SMO oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup) iter = 0#计算循环的次数 entireSet = True; alphaPairsChanged = 0 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): alphaPairsChanged = 0 if entireSet: #go over all for i in range(oS.m): alphaPairsChanged += innerL(i,oS) print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) iter += 1 else:#go over non-bound (railed) alphas nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] for i in nonBoundIs: alphaPairsChanged += innerL(i,oS) print("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) iter += 1 if entireSet: entireSet = False #toggle entire set loop elif (alphaPairsChanged == 0): entireSet = True print("iteration number: %d" % iter) return oS.b,oS.alphas #calcWs用于计算权重值w def calcWs(alphas,dataArr,classLabels):#计算权重W X = mat(dataArr); labelMat = mat(classLabels).transpose() m,n = shape(X) w = zeros((n,1)) for i in range(m): w += multiply(alphas[i]*labelMat[i],X[i,:].T) return w #值得注意的是测试准确与k1和C的取值有关。 def testRbf(k1=1.3):#给定输入参数K1 #测试训练集上的准确率 dataArr,labelArr = loadDataSet('testSetRBF.txt')#导入数据作为训练集 b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important datMat=mat(dataArr); labelMat = mat(labelArr).transpose() svInd=nonzero(alphas.A>0)[0]#找出alphas中大于0的元素的位置 #此处需要说明一下alphas.A的含义 sVs=datMat[svInd] #获取支持向量的矩阵,因为只要alpha中不等于0的元素都是支持向量 labelSV = labelMat[svInd]#支持向量的标签 print("there are %d Support Vectors" % shape(sVs)[0])#输出有多少个支持向量 m,n = shape(datMat)#数据组的矩阵形状表示为有m个数据,数据维数为n errorCount = 0#计算错误的个数 for i in range(m):#开始分类,是函数的核心 kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))#计算原数据集中各元素的核值 predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b#计算预测结果y的值 if sign(predict)!=sign(labelArr[i]): errorCount += 1#利用符号判断类别 ### sign(a)为符号函数:若a>0则输出1,若a<0则输出-1.### print("the training error rate is: %f" % (float(errorCount)/m)) #2、测试测试集上的准确率 dataArr,labelArr = loadDataSet('testSetRBF2.txt') errorCount = 0 datMat=mat(dataArr)#labelMat = mat(labelArr).transpose()此处可以不用 m,n = shape(datMat) for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print("the test error rate is: %f" % (float(errorCount)/m)) def main(): t1=time() dataArr,labelArr=loadDataSet('testSet.txt') b,alphas=smoP(dataArr,labelArr,0.6,0.01,40) ws=calcWs(alphas,dataArr,labelArr) testRbf() t2=time() print("程序所用时间为%ss"%(t2-t1)) if __name__=='__main__': main()
数据分析咨询请扫描二维码
准备CDA一级考试的时间因人而异,但根据多个来源的建议,平均备考周期在1个月左右为宜。有的考生可能在1-2周内完成备考并参加 ...
2024-09-13数据分析师的培训课程内容通常涵盖了数据分析的理论知识和实践技能,以帮助学员掌握数据分析的全过程。以下是一些典型的课程内 ...
2024-09-13近年来,随着社会的不断进步和科技的发展,计算机领域的各种新概念和技术不断涌现,并被广泛应用于企业管理、数据分析和公共服 ...
2024-09-13统计学作为一门理论与实践并重的学科,其就业前景一直被广泛看好。随着数据科学、大数据、人工智能等领域的快速发展,统计学在 ...
2024-09-13作者:鱼仔 某中厂老兵|CDA2级持证人|数据践行者 作为一名数据分析师,你可能会被朋友或同事问到:“数据分析师到底是干 ...
2024-09-13作者:鱼仔 某中厂老兵 | CDA2级持证人 | 数据践行者 统计学毕业生的就业选择非常多样化,几乎覆盖了各行各业。以 ...
2024-09-13数据分析人员使用业务分析报告汇报分析成果,对于业务分析报告的注意事项,以下不正确的是 A. 条理 ...
2024-09-13数据分析人员使用业务分析报告汇报分析成果,以下不属于业务分析报告调整完善阶段的是 A. &nbs ...
2024-09-13数据分析人员使用业务分析报告汇报分析成果,不同种类的分析报告着重点不同,以下不属于渠道合作报告的重点的是() A. & ...
2024-09-13作者:鱼仔 某中厂老兵|CDA2级持证人|数据践行者 作为一名数据分析师,很多人都会问,数据分析师究竟是干什么的?这个职 ...
2024-09-12【2024最新版】CDA考试教材:精益业务数据分析_CDA教材_精益数据分析CDA教材_精益数据分析_cda教材_考试教材 (cdaglobal.com) ...
2024-09-12作者:鱼仔 某中厂老兵|CDA2级持证人|数据践行者 数据分析师的日常工作涉及多个环节,从数据收集到最后的报告撰 ...
2024-09-12《数据分析专项练习题库》 《CDA数据分析认证考试模拟题库》 《企业数据分析面试题库》 75.利用Apriori算法计 ...
2024-09-12《数据分析专项练习题库》 《CDA数据分析认证考试模拟题库》 《企业数据分析面试题库》 一、单选题 1.某超市研究销 ...
2024-09-12在阿里巴巴、腾讯、字节跳动等科技巨头里,大数据是他们的核心竞争力之一。大数据帮助这些公司在海量数据中挖掘有价值的 ...
2024-09-12《数据分析专项练习题库》 《CDA数据分析认证考试模拟题库》 《企业数据分析面试题库》 一、单选题 1.统计图中的散 ...
2024-09-12《数据分析专项练习题库》 《CDA数据分析认证考试模拟题库》 《企业数据分析面试题库》 一、单选题 1.某超市研 ...
2024-09-12《CDA数据分析认证考试模拟题库》 一、单选题 1.统计图中的散点图主要用来(A)。 A ...
2024-09-12嗨喽,各位同学又到了公布CDA数据分析师认证考试LEVEL I的模拟试题时间了,今天给大家带来的是模拟试题(二)中的11-15题。 ...
2024-09-12CDA考试教材https://www.cdaglobal.com/article/475.html CDA模拟题库https://www.cdaglobal.com/ ...
2024-09-12