 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		想必大家在学习数据分析的时候,一定接触过ETL,那么关于ETL大家了解到什么程度呢?跟小编一起来复盘一下吧!
一、ETL概念
ETL全称是:Extract-Transform-Load,是将业务系统的数据经过抽取(Extract)、清洗转换(Transform)之后加载(Load)到数据仓库的过程。其目的是将企业中那些分散、零乱、标准不统一的数据整合到一起,从而为企业的决策提供分析依据。 ETL为BI项目一个非常重要的环节, 往往在BI项目中,ETL会占用我们整个项目至少1/3的时间,可以说ETL设计的好坏会直接关系到BI项目的成败。
二、ETL关键技术
	 
 
1.数据的抽取(Extract)
首先需要确定数据源,也就是要弄明白数据是从哪几个业务系统中来,每个业务系统的数据库服务器运行什么DBMS;是否有手工数据存在,存在的话,数据量是多少;是否有非结构化的数据存在等。我们需要定义数据接口,对每一个源文件及系统中的每一个字段进行详细说明。之后确定数据抽取的方法,例如:需要确定是主动抽取还是由源系统推送?是按每日抽取还是每月抽取?以及是增量抽取还是全量抽取?
2.数据的清洗转换(Transform)
(1)数据清洗(Cleaning)
数据清洗的主要任务是清洗掉那些不符合要求的数据,将清洗的结果交给业务主管部门,并确认是直接清洗掉,还是由业务单位修正之后再次抽取。
不符合要求的数据主要包括:不完整的数据、错误的数据、重复的数据这三类。
(2)数据转换
数据转换一般包括:
空值处理,也就是捕获字段空值,并将其加载或替换为其他含义数据,或者数据分流问题库
数据拆分,根据实际业务需求对数据进行拆分,例如对身份证号拆分,拆分行政区划、出生日期、性别等
数据验证,时间规则、业务规则、自定义规则
数据替换,替换由于业务因素而导致的那些无效数据、缺失数据
数据关联,与其他数据进行关联,以保障数据完整性
3.数据加载(Load)
将清洗和转换后的数据装载到对应的表库中是ETL过程的最后步骤。采用什么样的方法装载数据,关键取决于所执行操作的类型和需要装载的数据量。当对应库为关系数据库时,通常有两种装载方式:
(1)直接使用SQL语句进行insert、update、delete操作。
(2)采用批量装载方法,例如bcp、bulk、关系数据库特有的批量装载工具或者api。
三、ETL日志、警告发送
1、 ETL日志
ETL日志主要分为三类。
(1)执行过程日志::在ETL执行过程中每一步的记录,记录每一次运行过程中各步骤的起始时间,影响的数据量,以流水账形式记录。
(2)错误日志::某个模块出错时的日志,会记录出错的时间、出错的模块以及其它相关出错的信息等。
(3)总体日志:只是记录ETL开始和结束时间以及否成功等信息。
如果我们使用ETL工具,那些ETL工具会也自动产生日志,这些日志也可以看做ETL日志的一部分。
记录日志的有助于我们随时知道ETL运行情况,一旦出现错误,我们可以知道是哪里出错。
2、 警告发送
若ETL出现错误,不仅会形成ETL错误日志,并且会向系统管理员发送警告。警告发送的方式有很多种,通常会采用向系统管理员发送邮件的形式,并且会附上出错的相关信息,方便管理员排查错误。
ETL是BI项目的关键环节,也是一个长期的过程,需要不断的发现问题,并解决问题,才能让ETL运行效率更高,为BI项目后期开发提供更加准确与高效的分析数据。
四、ETL 模式
ETL主要有四种实现模式,分别为:触发器模式、增量字段、全量同步、日志比对
	 
 
五、ETL 工具
	 
 
我们在选择ETL工具时,需要考虑从工具对平台和数据源的支持程度,集成性和开放性、抽取和装载的性能、数据转换和加工的性能,以及侵入性的高低,是否管理和调度功能等方面综合考虑。
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23