京公网安备 11010802034615号
经营许可证编号:京B2-20210330
想必大家在学习数据分析的时候,一定接触过ETL,那么关于ETL大家了解到什么程度呢?跟小编一起来复盘一下吧!
一、ETL概念
ETL全称是:Extract-Transform-Load,是将业务系统的数据经过抽取(Extract)、清洗转换(Transform)之后加载(Load)到数据仓库的过程。其目的是将企业中那些分散、零乱、标准不统一的数据整合到一起,从而为企业的决策提供分析依据。 ETL为BI项目一个非常重要的环节, 往往在BI项目中,ETL会占用我们整个项目至少1/3的时间,可以说ETL设计的好坏会直接关系到BI项目的成败。
二、ETL关键技术
1.数据的抽取(Extract)
首先需要确定数据源,也就是要弄明白数据是从哪几个业务系统中来,每个业务系统的数据库服务器运行什么DBMS;是否有手工数据存在,存在的话,数据量是多少;是否有非结构化的数据存在等。我们需要定义数据接口,对每一个源文件及系统中的每一个字段进行详细说明。之后确定数据抽取的方法,例如:需要确定是主动抽取还是由源系统推送?是按每日抽取还是每月抽取?以及是增量抽取还是全量抽取?
2.数据的清洗转换(Transform)
(1)数据清洗(Cleaning)
数据清洗的主要任务是清洗掉那些不符合要求的数据,将清洗的结果交给业务主管部门,并确认是直接清洗掉,还是由业务单位修正之后再次抽取。
不符合要求的数据主要包括:不完整的数据、错误的数据、重复的数据这三类。
(2)数据转换
数据转换一般包括:
空值处理,也就是捕获字段空值,并将其加载或替换为其他含义数据,或者数据分流问题库
数据拆分,根据实际业务需求对数据进行拆分,例如对身份证号拆分,拆分行政区划、出生日期、性别等
数据验证,时间规则、业务规则、自定义规则
数据替换,替换由于业务因素而导致的那些无效数据、缺失数据
数据关联,与其他数据进行关联,以保障数据完整性
3.数据加载(Load)
将清洗和转换后的数据装载到对应的表库中是ETL过程的最后步骤。采用什么样的方法装载数据,关键取决于所执行操作的类型和需要装载的数据量。当对应库为关系数据库时,通常有两种装载方式:
(1)直接使用SQL语句进行insert、update、delete操作。
(2)采用批量装载方法,例如bcp、bulk、关系数据库特有的批量装载工具或者api。
三、ETL日志、警告发送
1、 ETL日志
ETL日志主要分为三类。
(1)执行过程日志::在ETL执行过程中每一步的记录,记录每一次运行过程中各步骤的起始时间,影响的数据量,以流水账形式记录。
(2)错误日志::某个模块出错时的日志,会记录出错的时间、出错的模块以及其它相关出错的信息等。
(3)总体日志:只是记录ETL开始和结束时间以及否成功等信息。
如果我们使用ETL工具,那些ETL工具会也自动产生日志,这些日志也可以看做ETL日志的一部分。
记录日志的有助于我们随时知道ETL运行情况,一旦出现错误,我们可以知道是哪里出错。
2、 警告发送
若ETL出现错误,不仅会形成ETL错误日志,并且会向系统管理员发送警告。警告发送的方式有很多种,通常会采用向系统管理员发送邮件的形式,并且会附上出错的相关信息,方便管理员排查错误。
ETL是BI项目的关键环节,也是一个长期的过程,需要不断的发现问题,并解决问题,才能让ETL运行效率更高,为BI项目后期开发提供更加准确与高效的分析数据。
四、ETL 模式
ETL主要有四种实现模式,分别为:触发器模式、增量字段、全量同步、日志比对
五、ETL 工具
我们在选择ETL工具时,需要考虑从工具对平台和数据源的支持程度,集成性和开放性、抽取和装载的性能、数据转换和加工的性能,以及侵入性的高低,是否管理和调度功能等方面综合考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03