京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Kmeans算法,又叫做K均值聚类算法,可以说是无监督聚类算法中最具代表性,最经典的聚类算法了,这一算法的主要作用是将相似的样本自动归到一个类别中。小编特意整理了这一经典聚类算法的基本原理供大家参考,希望对大家有所帮助。
一、首先来看一下Kmeans算法的效果
#通过简单的例子来直接查看K均值聚类的效果 from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np %matplotlib inline #聚类前 X = np.random.rand(100,2) plt.scatter(X[:,0],X[:,1], marker='o')
#聚类后 kmeans = KMeans(n_clusters=4).fit(X) label_pred = kmeans.labels_ plt.scatter(X[:,0],X[:,1],c=label_pred) plt.show()
二、Kmeans算法基本原理
假定给定数据样本X,包含了n个对象
其中每个对象都具有m个维度的属性。Kmeans算法的目标是将n个对象依据对象间的相似性聚集到指定的k个类簇中,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中。对于Kmeans,首先需要初始化k个聚类中心{C1.C2.C3....,Ck},1<k≤n,然后通过计算每一个对象到每一个聚类中心的欧式距离,如下式所示
依次比较每一个对象到每一个聚类中心的距离,将对象分配到距离最近的聚类中心的类簇中,得到k个类簇{S1.S2.S3....,Sk}
Kmeans算法用中心定义了类簇的原型,类簇中心就是类簇内所有对象在各个维度的均值,其计算公式如下
代码实现
Kmeans算法 % 输入: % data 输入的不带分类标号的数据 % K 数据一共分多少类 % iniCentriods 自行指定初始聚类中心 % iterations 迭代次数 % 输出: % Idx 返回的分类标号 % centroids 每一类的中心 % Distance 类内总距离 function [Idx,centroids,Distance]=KMeans(data,K,iniCentriods,iterations) [numOfData,numOfAttr]=size(data); % numOfData是数据个数,numOfAttr是数据维数 centroids=iniCentriods; %% 迭代 for iter=1:iterations pre_centroids=centroids;% 上一次求得的中心位置 tags=zeros(numOfData,K); %% 寻找最近中心,更新中心 for i=1:numOfData D=zeros(1,K);% 每个数据点与每个聚类中心的标准差 Dist=D; % 计算每个点到每个中心点的标准差 for j=1:K Dist(j)=norm(data(i,:)-centroids(j,:),2); end [minDistance,index]=min(Dist);% 寻找距离最小的类别索引 tags(i,index)=1;% 标记最小距离所处的位置(类别) end %% 取均值更新聚类中心点 for i=1:K if sum(tags(:,i))~=0 % 未出现空类,计算均值作为下一聚类中心 for j=1:numOfAttr centroids(i,j)=sum(tags(:,i).*data(:,j))/sum(tags(:,i)); end else % 如果出现空类,从数据集中随机选中一个点作为中心 randidx = randperm(size(data, 1)); centroids(i,:) = data(randidx(1),:); tags(randidx,:)=0; tags(randidx,i)=1; end end if sum(norm(pre_centroids-centroids,2))<0.001 % 不断迭代直到位置不再变化 break; end end %% 计算输出结果 Distance=zeros(numOfData,1); Idx=zeros(numOfData,1); for i=1:numOfData D=zeros(1,K);% 每个数据点与每个聚类中心的标准差 Dist=D; % 计算每个点到每个中心点的标准差 for j=1:K Dist(j)=norm(data(i,:)-centroids(j,:),2); end [distance,idx]=min(Dist);% 寻找距离最小的类别索引 distance=Dist(idx); Distance(i)=distance; Idx(i)=idx; end Distance=sum(Distance,1);% 计算类内总距离 end
二、Kmeans的优化算法
1.二分K-means算法
二分KMeans特点:解决K-Means算法对初始簇心比较敏感的问题,二分K-Means算法是一种弱化初 始质心的一种算法
二分Kmeans 具体思路步骤:
(1) 将所有样本数据放回到一个蔟队列中
(2) 队列中的一个蔟进行 k = 2 的KMeans算法聚类形成两个子蔟,将他们放回到蔟队列中
(3)重复这个步骤,直到中止条件达到(主要是聚簇数量)
选取队列蔟二划分的条件:
(1)选取蔟距离平方和SSE 最大的蔟进行二划分(优先)。
(2)选取样本较多的蔟进行二划分。
2.Kmeans++算法
K-Means++算法就是对K-Means随机初始化质心的方法的优化。K-Means++的对于初始化质心的优化策略也很简单,如下:
(1)从输入的数据点集合中随机选择一个点作为第一个聚类中心μ1
(2)
(3)选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大
(4)重复2和3直到选择出k个聚类质心
(5)利用这k个质心来作为初始化质心去运行标准的K-Means算法
简单的来说, Kmeans++ 就是选择离已选中心点最远的点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11