前面文章小编简单给大家介绍了泛化能力的一些基础知识,今天给大家带来的是提高模型泛化能力的方法--正则化。
一、首先来回顾一下什么是泛化能力
泛化能力(generalization ability),百科给出的定义是:机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据对背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该能力称为泛化能力。简单来概括一下,泛化能力就是一个机器学习算法能够识别没有见过的样本的能力,通俗点说就是学以致用,举一反三的能力。机器学习方法训练出一个模型,我们会希望这个模型不但是对于已知的数据(训练集)性能表现良好,而且对于未知的数据(测试集)也能够表现良好,这就表明这个模型具有良好的泛化能力。在实际应用子中,模型的过拟合(overfitting)与欠拟合(underfitting)能够最直观的体现出泛化能力的好坏。
根据泛化能力强弱,可以分为:
欠拟合:模型不能在训练集上获得足够低的误差;
拟合:测试误差与训练误差差距较小;
过拟合:训练误差和测试误差之间的差距太大;
不收敛:模型不是根据训练集训练得到的。
二、简单介绍正则化
正则化regularization的目标为:模型的经验风险和模型复杂度之和达到最小,即结构风险达到最小。也就是正则化的目的是为了防止过拟合, 从而增强泛化能力。
我们通常将正则化定义为:对学习算法的修改,目的是减少泛化误差而不是训练误差
在训练次数足够多,以及表达形式足够复杂的情况下,训练误差能够无限小,可是这并不代表着泛化误差的减小。相反的,一般情况下,这样会导致泛化误差的增大。最常见的例子是:真实数据的分布符合二次函数,但是欠拟合一般会将模型拟合成一次函数,而过拟合通常将模型拟合成高次函数。根据奥卡姆剃须原则:在尽可能符合数据原始分布的基础上,更加平滑、简单的模型,往往更加符合数据的真实特征。所以,我们必须采用采用某种约束,这也就引出了的正则化。
三、正则化---提高模型的泛化能力
按策略正则化可以分为以下三类:
(一) 经验正则化:利用工程上的技巧,实现更低的泛化误差,例如:提前终止法、模型集成、Dropout等;
1.提前终止(earlystop)
一种最简单的正则化方法,在泛化误差指标不再提升后,提前结束训练
2.模型集成(ensemable))
通过训练多个模型来完成该任务,这些模型可以是不同的网络结构,不同的初始化方法,不同的数据集训练出来的,也可以是采用不同的测试图片处理方法。总结来说就是,利用多个模型进行投票的策略
3.Dropout移除一部分神经元
Dropout采用的是"综合起来取平均”的策略,来防止过拟合问题。不同的网络会产生不同的过拟合问题,取平均会让一些“相反的”拟合有互相抵消的可能,整个Dropout过程就相当于 对很多个不同的神经网络取平均。而且因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现,这样会减少神经元之间复杂的共适应关系
(二)参数正则化:直接提供正则化约束,例如:L1/L2正则化法等;
L1/L2正则化方法,就是最常用的正则化方法,它直接来自于传统的机器学习。
L1正则化:
L2正则化:
(三)隐式正则化:不直接提供约束,例如:数据有关的操作,包括归一化、数据增强、扰乱标签等。
数据分析咨询请扫描二维码
在现代数据驱动的世界中,数据挖掘和数据分析已经成为了许多行业的重要工具。尽管这两个概念经常被人混淆,但它们各自有着独特 ...
2024-09-07作为数据分析领域的一个重要工具,SPSS 在统计分析中广泛应用。无论是学术研究、商业分析,还是医疗、金融领域的数据处理,SPS ...
2024-09-07作为数据分析领域的一个重要工具,SPSS 在统计分析中广泛应用。无论是学术研究、商业分析,还是医疗、金融领域的数据处理,SPS ...
2024-09-07作为一名数据分析从业者,我深知系统化的流程对于成功完成数据分析项目至关重要。尤其是对初学者而言,掌握正确的分析步骤不仅 ...
2024-09-07作为一名热爱数据分析的从业者,我时常回想起刚入行时的摸索历程。数据分析是一个既充满挑战又激动人心的领域,尤其对于初学者 ...
2024-09-07信息管理与信息系统专业的学生在就业市场上具有广阔的前景。随着信息技术的不断发展和数字化转型的加速,对于既懂技术又懂管理 ...
2024-09-06商务数据分析与应用专业的学生考取CDA(Certified Data Analyst)证书对于提升就业竞争力是有帮助的。CDA证书是一套科学化、专 ...
2024-09-06首先,在众多的职业认证中,CDA(Certified Digital Analyst)数字化人才认证逐渐成为统计学专业学生的首选。该认证不仅能够提 ...
2024-09-06统计学专业毕业生的主要就业流向有三大部分:政府部门(统计局等),银行、保险公司、证券公司等金融部门,市场调查公司、咨询 ...
2024-09-06统计学,作为一种基于数据分析的方法论科学,在当前信息化、数据化的社会中愈发重要。在各种行业中,无论是金融业、制造业、医 ...
2024-09-06第 1 章 引言 随着信息技术的迅猛发展,人工智能(Artificial Intelligence, AI)迅速成为全球科技创新的焦 ...
2024-09-06信息管理与信息系统专业作为现代信息化社会中的一门重要学科,其毕业生在市场中的就业情况备受关注。随着信息技术的快速发展, ...
2024-09-06在当前信息时代,数据的爆炸式增长已经成为不可忽视的事实。随着大数据、云计算和人工智能等技术的迅速发展,数据分析在各行各 ...
2024-09-06随着数据科学和机器学习技术在各行各业中的广泛应用,数据分析师这一职业逐渐成为推动经济和技术 ...
2024-09-06随着数字技术的迅猛发展,数字经济已成为推动全球经济增长的重要动力。各行各业正在加速数字化转型,涌现出大量与数字经济相关 ...
2024-09-06在当今数字化时代,拥有相应的专业证书不仅是求职竞争中的利器,更是个人职业发展的一大助力。CDA(Certified Digital Associa ...
2024-09-06随着科技的迅猛发展,数字经济已经逐渐成为各国经济增长的重要引擎,涉及的领域和行业瞬息万变。从传统 ...
2024-09-06在如今的数据驱动世界里,商业数据分析师的角色愈发重要。我常与新手分享这样一个故事:当我第一次作为数据分析师进入职场时, ...
2024-09-06在当今数字化时代,数据已成为推动企业发展的新动力。特别是在商务领域,数据分析的能力不仅影响着企业的决策,更关系到其竞争 ...
2024-09-06在当前数字化转型浪潮中,BI(商业智能)数据分析已成为推动企业决策和提升效率的重要手段。作为数据分析从业者,我常常通过BI ...
2024-09-06