
偏差与方差是我们在机器学习中经常遇到的两个概念,而且在有关机器学习的面试中,偏差与方差也经常拿来考验面试者的机器学习的基础知识。偏差与方差这两者看似简单,但要真正弄清楚两者之间的联系与区别,必须要下大功夫才可以。今天小编就为大家整理、分享偏差与方差的那些联系与区别。希望对大家有所帮助。
机器学习中,当我们用训练数据集去训练一个模型时,一般的做法就是定义一个误差函数,通过将这个误差的最小化过程,以此来提高模型的性能。但是,我们学习一个模型通常是为了解决训练数据集这一领域中的一般化问题,因此单纯地将训练数据集的损失最小化,并不能保证在解决更为一般的问题时,模型仍然是最优的,甚至连保证模型是否可用都不能保证。这个训练数据集的损失,与一般化的数据集的损失之间的差异,也就是泛化误差generalization error。而泛化误差又可以分解为以下三项:
偏差(Biase)、方差(Variance)和噪声(Noise)。
偏差Biase:描述的是所有可能的训练数据集训练出的所有模型的输出的平均值与真实模型的输出值之间的差异。偏差越大,越偏离真实数据,如上图第二行所示。
方差Variance:描述的是不同的训练数据集训练出的模型输出值之间的差异,也就是离其期望值的距离。方差越大,数据的分布越分散,如上图右列所示。
噪声Noise:是学习算法所无法解决的问题,数据的质量决定了学习的上限。假设在数据已经给定的情况下,此时学习的上限已经确定,而这时我们需要做的就是尽可能的接近这个上限。
泛化误差
以回归任务为例, 学习算法的平方预测误差期望为:
在一个训练集 D 上模型 f 对测试样本 x 的预测输出为 f(x;D), 那么学习算法 f 对测试样本 x 的 期望预测 为:
上面的期望预测也就是针对 不同 数据集 D, f 对 x 的预测值取其期望, 也被叫做 average predicted。
使用样本数相同的不同训练集产生的方差为:
噪声
噪声为真实标记与数据集中的实际标记间的偏差:
期望预测与真实标记的误差称为偏差(bias), 为了方便起见, 我们直接取偏差的平方:
我们回忆下刚才提到的泛化误差:
现在对该期望泛化误差进行分解:
对最终的推导结果稍作整理:
三、学习曲线
我们通常用使用代价函数J,也就是平方差函数,来评价数据拟合程度好坏。在只关注Jtrain(θ)(训练集误差)的情况下,通常会导致过拟合,因此也必须要关注Jcv(θ)也就是交叉验证集误差。学习曲线 的横轴是样本数,纵轴为 训练集 和 交叉验证集 的 误差。
高偏差:高偏差情况下,Jtrain(θ)和Jcv(θ)误差都很大,并且Jtrain很接近Jcv(θ)。对应欠拟合。
高方差:Jtrain(θ)较小,Jcv(θ)误差很大。对应过拟合。
在实际优化情况下,更多的是对防止过拟合参数λ的调整,λ对应的是正则化系数,λ越大,代表着对过拟合的限制越强。下图就是λ和,Jtrain(θ)和Jcv(θ)理想曲线。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08