
偏差与方差是我们在机器学习中经常遇到的两个概念,而且在有关机器学习的面试中,偏差与方差也经常拿来考验面试者的机器学习的基础知识。偏差与方差这两者看似简单,但要真正弄清楚两者之间的联系与区别,必须要下大功夫才可以。今天小编就为大家整理、分享偏差与方差的那些联系与区别。希望对大家有所帮助。
机器学习中,当我们用训练数据集去训练一个模型时,一般的做法就是定义一个误差函数,通过将这个误差的最小化过程,以此来提高模型的性能。但是,我们学习一个模型通常是为了解决训练数据集这一领域中的一般化问题,因此单纯地将训练数据集的损失最小化,并不能保证在解决更为一般的问题时,模型仍然是最优的,甚至连保证模型是否可用都不能保证。这个训练数据集的损失,与一般化的数据集的损失之间的差异,也就是泛化误差generalization error。而泛化误差又可以分解为以下三项:
偏差(Biase)、方差(Variance)和噪声(Noise)。
偏差Biase:描述的是所有可能的训练数据集训练出的所有模型的输出的平均值与真实模型的输出值之间的差异。偏差越大,越偏离真实数据,如上图第二行所示。
方差Variance:描述的是不同的训练数据集训练出的模型输出值之间的差异,也就是离其期望值的距离。方差越大,数据的分布越分散,如上图右列所示。
噪声Noise:是学习算法所无法解决的问题,数据的质量决定了学习的上限。假设在数据已经给定的情况下,此时学习的上限已经确定,而这时我们需要做的就是尽可能的接近这个上限。
泛化误差
以回归任务为例, 学习算法的平方预测误差期望为:
在一个训练集 D 上模型 f 对测试样本 x 的预测输出为 f(x;D), 那么学习算法 f 对测试样本 x 的 期望预测 为:
上面的期望预测也就是针对 不同 数据集 D, f 对 x 的预测值取其期望, 也被叫做 average predicted。
使用样本数相同的不同训练集产生的方差为:
噪声
噪声为真实标记与数据集中的实际标记间的偏差:
期望预测与真实标记的误差称为偏差(bias), 为了方便起见, 我们直接取偏差的平方:
我们回忆下刚才提到的泛化误差:
现在对该期望泛化误差进行分解:
对最终的推导结果稍作整理:
三、学习曲线
我们通常用使用代价函数J,也就是平方差函数,来评价数据拟合程度好坏。在只关注Jtrain(θ)(训练集误差)的情况下,通常会导致过拟合,因此也必须要关注Jcv(θ)也就是交叉验证集误差。学习曲线 的横轴是样本数,纵轴为 训练集 和 交叉验证集 的 误差。
高偏差:高偏差情况下,Jtrain(θ)和Jcv(θ)误差都很大,并且Jtrain很接近Jcv(θ)。对应欠拟合。
高方差:Jtrain(θ)较小,Jcv(θ)误差很大。对应过拟合。
在实际优化情况下,更多的是对防止过拟合参数λ的调整,λ对应的是正则化系数,λ越大,代表着对过拟合的限制越强。下图就是λ和,Jtrain(θ)和Jcv(θ)理想曲线。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10