京公网安备 11010802034615号
经营许可证编号:京B2-20210330
偏差与方差是我们在机器学习中经常遇到的两个概念,而且在有关机器学习的面试中,偏差与方差也经常拿来考验面试者的机器学习的基础知识。偏差与方差这两者看似简单,但要真正弄清楚两者之间的联系与区别,必须要下大功夫才可以。今天小编就为大家整理、分享偏差与方差的那些联系与区别。希望对大家有所帮助。
机器学习中,当我们用训练数据集去训练一个模型时,一般的做法就是定义一个误差函数,通过将这个误差的最小化过程,以此来提高模型的性能。但是,我们学习一个模型通常是为了解决训练数据集这一领域中的一般化问题,因此单纯地将训练数据集的损失最小化,并不能保证在解决更为一般的问题时,模型仍然是最优的,甚至连保证模型是否可用都不能保证。这个训练数据集的损失,与一般化的数据集的损失之间的差异,也就是泛化误差generalization error。而泛化误差又可以分解为以下三项:
偏差(Biase)、方差(Variance)和噪声(Noise)。
偏差Biase:描述的是所有可能的训练数据集训练出的所有模型的输出的平均值与真实模型的输出值之间的差异。偏差越大,越偏离真实数据,如上图第二行所示。
方差Variance:描述的是不同的训练数据集训练出的模型输出值之间的差异,也就是离其期望值的距离。方差越大,数据的分布越分散,如上图右列所示。
噪声Noise:是学习算法所无法解决的问题,数据的质量决定了学习的上限。假设在数据已经给定的情况下,此时学习的上限已经确定,而这时我们需要做的就是尽可能的接近这个上限。
泛化误差
以回归任务为例, 学习算法的平方预测误差期望为:
在一个训练集 D 上模型 f 对测试样本 x 的预测输出为 f(x;D), 那么学习算法 f 对测试样本 x 的 期望预测 为:
上面的期望预测也就是针对 不同 数据集 D, f 对 x 的预测值取其期望, 也被叫做 average predicted。
使用样本数相同的不同训练集产生的方差为:
噪声
噪声为真实标记与数据集中的实际标记间的偏差:
期望预测与真实标记的误差称为偏差(bias), 为了方便起见, 我们直接取偏差的平方:
我们回忆下刚才提到的泛化误差:
现在对该期望泛化误差进行分解:
对最终的推导结果稍作整理:
三、学习曲线
我们通常用使用代价函数J,也就是平方差函数,来评价数据拟合程度好坏。在只关注Jtrain(θ)(训练集误差)的情况下,通常会导致过拟合,因此也必须要关注Jcv(θ)也就是交叉验证集误差。学习曲线 的横轴是样本数,纵轴为 训练集 和 交叉验证集 的 误差。
高偏差:高偏差情况下,Jtrain(θ)和Jcv(θ)误差都很大,并且Jtrain很接近Jcv(θ)。对应欠拟合。
高方差:Jtrain(θ)较小,Jcv(θ)误差很大。对应过拟合。
在实际优化情况下,更多的是对防止过拟合参数λ的调整,λ对应的是正则化系数,λ越大,代表着对过拟合的限制越强。下图就是λ和,Jtrain(θ)和Jcv(θ)理想曲线。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28