京公网安备 11010802034615号
经营许可证编号:京B2-20210330
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
但对于很多考生来说,没有备考经验,不知道应该如何备考?今天,我来指导大家应该如何备考,让大家充分准备,拿下CDA考试。在CDA考试大纲中为新考生讲解备考经验一下。
如何进行有效的、有针对性的备考?
——LEVEL 1 业务数据分析师
LEVEL 1 学习内容涉及描述性统计、推断性统计、SQL数据库基础、数据采集以及数据建模分析等多方面的知识和技能,其知识系统且理论性强,所以学习时不要死记硬背,而要讲求学习技巧。
CDA认证考试 Level Ⅰ 的难点分析
SQL和统计学的部分相对是比较简单的,多加练习即可掌握。
比较难的是多元统计的,如果不是统计学专业系统学习过的话理解起来还是比较吃力的。主成分分析、因子分析、聚类分析、分类分析、逻辑回归的概念理解起来都非常困难,就更谈不上应用了,实际上这些也是掌握起来比较困难的部分。建议多通过视频进行学习,重复观看,通过老师的讲解逐渐建立起多元统计的思维和逻辑,吃透理解知识点,达到可应用的层面。考试遇到同类型的问题,也不慌。
对备考者们的建议
首先要有充分的时间备考。临时抱佛脚也许可以侥幸通过考试,但对于自己掌握知识没有太大的帮助,毕竟考试是为了学习,不可本末倒置。
其次要有坚持不懈的精神。简单的知识不可大意,学到通透为止,复杂的地方不畏惧,死磕到底,要树立起终身学习的信念。考试通过并不意味着结束,而仅仅意味着开始。
第三要有提高效率的方法。对于初学者来说,你能遇到的绝大多数问题都有大神帮你解决,并且写成了博客,可以到CSDN上去搜一搜,相信你会有很大的收获。
——LEVEL 2 建模分析师方向
考试涉及数据挖掘基础理论、数据预处理、预测型数据挖掘模型、描述型数据挖掘模型四大部分。
CDA认证考试 Level Ⅱ 建模分析师的难点分析
客观题中会有些迷惑性的选项或字样,如果不加辨别很容易出错;还有些之前未了解过的算法,很难在较短时间内有深刻记忆;案例操作题中缺失值,需要使用合适的值填充缺失值。算法细节不好理解,需要从多个角度反复思考。遇到有较大的问题,比如如何选择合适的算法。在算法选择后,如何调整最优参数来提升模型预测或分类的准确度。如有一起备考可以讨论的伙伴,会大大减少这方面的困扰。
CDA2建模相比CDA1来说更偏重于实战多一些,所以对我这种实战大于理论的人来说更适应一些。印象比较深刻的是在做第二套模拟题时碰到一道计算贝叶斯的题目,算出来的答案和标准答案不一致,群里讨论了很久,最后还是依靠CDA老师给出了解题思路。所以群内讨论是一个很好的学习方法,只有沟通交流才能迅速进步。
对备考者们的建议
大纲中的内容要全部掌握,参考书尽量看。复习到位的话,理论题分数差距不大,重点在实操题,多动手,多尝试。考试涉及到的内容多,范围广,在准备的时候要抓重点;另外案例操作题先要理解数据,理解数据背后的业务逻辑,不要直接就训练模型。
——LEVEL 2 大数据分析师方向
最后,我们来聊一聊LEVEL 2 大数据分析师。
CDA认证考试 Level Ⅱ 大数据分析师的难点分析
1)Hadoop和Spark运行机制不易理解,有条件的应去图书馆寻找相关书籍,多看多思考多记忆,阅读源码和断点调试有助于理解。
2)SparkMLlib机器学习部分内容较多,也是实操的重点内容,应结合实例加深对各个算法的理解。
对备考者们的建议
1)由于大数据生态涉及架构较多,没有基础的同学应以Spark学习为主,有基础的同学应以Spark与各生态结合应用为主,通过考试系统的学习或复习相关知识点,同时Scala的学习有助于阅读Spark源码,加深对Spark原理及应用的理解。
2)考纲解析内容有限,要对照考纲动手整理笔记。
3) 学习的目的是应用,不只是考试,每一章节都应寻找相关练习,动手操作,做到每一部分代码至少码三遍。
最后,这里再分享一个考试备考过程中人人皆需的模拟题库——CDA考试模拟题库。
题库是紧密结合CDA考试大纲而编写的一套模拟试题库。为顺利通过考试奠定坚实的基础
1、解析详尽:每道题目基本上都配备了详细的解析和答案,帮助你深入理解题目背后的知识点和解题思路。
2、便捷高效:你可以随时随地通过手机或电脑访问题库,进行自主学习和练习,充分利用碎片时间,提高备考效率。
3、模拟考试:题库提供了多套模拟考试试卷,帮助你熟悉考试流程和题型。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
备考福利
好了以上就是四门职业资格认证的备考介绍,接下来给大家重磅推出考试学习资源:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27