京公网安备 11010802034615号
经营许可证编号:京B2-20210330
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
但对于很多考生来说,没有备考经验,不知道应该如何备考?今天,我来指导大家应该如何备考,让大家充分准备,拿下CDA考试。在CDA考试大纲中为新考生讲解备考经验一下。
如何进行有效的、有针对性的备考?
——LEVEL 1 业务数据分析师
LEVEL 1 学习内容涉及描述性统计、推断性统计、SQL数据库基础、数据采集以及数据建模分析等多方面的知识和技能,其知识系统且理论性强,所以学习时不要死记硬背,而要讲求学习技巧。
CDA认证考试 Level Ⅰ 的难点分析
SQL和统计学的部分相对是比较简单的,多加练习即可掌握。
比较难的是多元统计的,如果不是统计学专业系统学习过的话理解起来还是比较吃力的。主成分分析、因子分析、聚类分析、分类分析、逻辑回归的概念理解起来都非常困难,就更谈不上应用了,实际上这些也是掌握起来比较困难的部分。建议多通过视频进行学习,重复观看,通过老师的讲解逐渐建立起多元统计的思维和逻辑,吃透理解知识点,达到可应用的层面。考试遇到同类型的问题,也不慌。
对备考者们的建议
首先要有充分的时间备考。临时抱佛脚也许可以侥幸通过考试,但对于自己掌握知识没有太大的帮助,毕竟考试是为了学习,不可本末倒置。
其次要有坚持不懈的精神。简单的知识不可大意,学到通透为止,复杂的地方不畏惧,死磕到底,要树立起终身学习的信念。考试通过并不意味着结束,而仅仅意味着开始。
第三要有提高效率的方法。对于初学者来说,你能遇到的绝大多数问题都有大神帮你解决,并且写成了博客,可以到CSDN上去搜一搜,相信你会有很大的收获。
——LEVEL 2 建模分析师方向
考试涉及数据挖掘基础理论、数据预处理、预测型数据挖掘模型、描述型数据挖掘模型四大部分。
CDA认证考试 Level Ⅱ 建模分析师的难点分析
客观题中会有些迷惑性的选项或字样,如果不加辨别很容易出错;还有些之前未了解过的算法,很难在较短时间内有深刻记忆;案例操作题中缺失值,需要使用合适的值填充缺失值。算法细节不好理解,需要从多个角度反复思考。遇到有较大的问题,比如如何选择合适的算法。在算法选择后,如何调整最优参数来提升模型预测或分类的准确度。如有一起备考可以讨论的伙伴,会大大减少这方面的困扰。
CDA2建模相比CDA1来说更偏重于实战多一些,所以对我这种实战大于理论的人来说更适应一些。印象比较深刻的是在做第二套模拟题时碰到一道计算贝叶斯的题目,算出来的答案和标准答案不一致,群里讨论了很久,最后还是依靠CDA老师给出了解题思路。所以群内讨论是一个很好的学习方法,只有沟通交流才能迅速进步。
对备考者们的建议
大纲中的内容要全部掌握,参考书尽量看。复习到位的话,理论题分数差距不大,重点在实操题,多动手,多尝试。考试涉及到的内容多,范围广,在准备的时候要抓重点;另外案例操作题先要理解数据,理解数据背后的业务逻辑,不要直接就训练模型。
——LEVEL 2 大数据分析师方向
最后,我们来聊一聊LEVEL 2 大数据分析师。
CDA认证考试 Level Ⅱ 大数据分析师的难点分析
1)Hadoop和Spark运行机制不易理解,有条件的应去图书馆寻找相关书籍,多看多思考多记忆,阅读源码和断点调试有助于理解。
2)SparkMLlib机器学习部分内容较多,也是实操的重点内容,应结合实例加深对各个算法的理解。
对备考者们的建议
1)由于大数据生态涉及架构较多,没有基础的同学应以Spark学习为主,有基础的同学应以Spark与各生态结合应用为主,通过考试系统的学习或复习相关知识点,同时Scala的学习有助于阅读Spark源码,加深对Spark原理及应用的理解。
2)考纲解析内容有限,要对照考纲动手整理笔记。
3) 学习的目的是应用,不只是考试,每一章节都应寻找相关练习,动手操作,做到每一部分代码至少码三遍。
最后,这里再分享一个考试备考过程中人人皆需的模拟题库——CDA考试模拟题库。
题库是紧密结合CDA考试大纲而编写的一套模拟试题库。为顺利通过考试奠定坚实的基础
1、解析详尽:每道题目基本上都配备了详细的解析和答案,帮助你深入理解题目背后的知识点和解题思路。
2、便捷高效:你可以随时随地通过手机或电脑访问题库,进行自主学习和练习,充分利用碎片时间,提高备考效率。
3、模拟考试:题库提供了多套模拟考试试卷,帮助你熟悉考试流程和题型。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
备考福利
好了以上就是四门职业资格认证的备考介绍,接下来给大家重磅推出考试学习资源:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19