
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
但对于很多考生来说,没有备考经验,不知道应该如何备考?今天,我来指导大家应该如何备考,让大家充分准备,拿下CDA考试。在CDA考试大纲中为新考生讲解备考经验一下。
如何进行有效的、有针对性的备考?
——LEVEL 1 业务数据分析师
LEVEL 1 学习内容涉及描述性统计、推断性统计、SQL数据库基础、数据采集以及数据建模分析等多方面的知识和技能,其知识系统且理论性强,所以学习时不要死记硬背,而要讲求学习技巧。
CDA认证考试 Level Ⅰ 的难点分析
SQL和统计学的部分相对是比较简单的,多加练习即可掌握。
比较难的是多元统计的,如果不是统计学专业系统学习过的话理解起来还是比较吃力的。主成分分析、因子分析、聚类分析、分类分析、逻辑回归的概念理解起来都非常困难,就更谈不上应用了,实际上这些也是掌握起来比较困难的部分。建议多通过视频进行学习,重复观看,通过老师的讲解逐渐建立起多元统计的思维和逻辑,吃透理解知识点,达到可应用的层面。考试遇到同类型的问题,也不慌。
对备考者们的建议
首先要有充分的时间备考。临时抱佛脚也许可以侥幸通过考试,但对于自己掌握知识没有太大的帮助,毕竟考试是为了学习,不可本末倒置。
其次要有坚持不懈的精神。简单的知识不可大意,学到通透为止,复杂的地方不畏惧,死磕到底,要树立起终身学习的信念。考试通过并不意味着结束,而仅仅意味着开始。
第三要有提高效率的方法。对于初学者来说,你能遇到的绝大多数问题都有大神帮你解决,并且写成了博客,可以到CSDN上去搜一搜,相信你会有很大的收获。
——LEVEL 2 建模分析师方向
考试涉及数据挖掘基础理论、数据预处理、预测型数据挖掘模型、描述型数据挖掘模型四大部分。
CDA认证考试 Level Ⅱ 建模分析师的难点分析
客观题中会有些迷惑性的选项或字样,如果不加辨别很容易出错;还有些之前未了解过的算法,很难在较短时间内有深刻记忆;案例操作题中缺失值,需要使用合适的值填充缺失值。算法细节不好理解,需要从多个角度反复思考。遇到有较大的问题,比如如何选择合适的算法。在算法选择后,如何调整最优参数来提升模型预测或分类的准确度。如有一起备考可以讨论的伙伴,会大大减少这方面的困扰。
CDA2建模相比CDA1来说更偏重于实战多一些,所以对我这种实战大于理论的人来说更适应一些。印象比较深刻的是在做第二套模拟题时碰到一道计算贝叶斯的题目,算出来的答案和标准答案不一致,群里讨论了很久,最后还是依靠CDA老师给出了解题思路。所以群内讨论是一个很好的学习方法,只有沟通交流才能迅速进步。
对备考者们的建议
大纲中的内容要全部掌握,参考书尽量看。复习到位的话,理论题分数差距不大,重点在实操题,多动手,多尝试。考试涉及到的内容多,范围广,在准备的时候要抓重点;另外案例操作题先要理解数据,理解数据背后的业务逻辑,不要直接就训练模型。
——LEVEL 2 大数据分析师方向
最后,我们来聊一聊LEVEL 2 大数据分析师。
CDA认证考试 Level Ⅱ 大数据分析师的难点分析
1)Hadoop和Spark运行机制不易理解,有条件的应去图书馆寻找相关书籍,多看多思考多记忆,阅读源码和断点调试有助于理解。
2)SparkMLlib机器学习部分内容较多,也是实操的重点内容,应结合实例加深对各个算法的理解。
对备考者们的建议
1)由于大数据生态涉及架构较多,没有基础的同学应以Spark学习为主,有基础的同学应以Spark与各生态结合应用为主,通过考试系统的学习或复习相关知识点,同时Scala的学习有助于阅读Spark源码,加深对Spark原理及应用的理解。
2)考纲解析内容有限,要对照考纲动手整理笔记。
3) 学习的目的是应用,不只是考试,每一章节都应寻找相关练习,动手操作,做到每一部分代码至少码三遍。
最后,这里再分享一个考试备考过程中人人皆需的模拟题库——CDA考试模拟题库。
题库是紧密结合CDA考试大纲而编写的一套模拟试题库。为顺利通过考试奠定坚实的基础
1、解析详尽:每道题目基本上都配备了详细的解析和答案,帮助你深入理解题目背后的知识点和解题思路。
2、便捷高效:你可以随时随地通过手机或电脑访问题库,进行自主学习和练习,充分利用碎片时间,提高备考效率。
3、模拟考试:题库提供了多套模拟考试试卷,帮助你熟悉考试流程和题型。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
备考福利
好了以上就是四门职业资格认证的备考介绍,接下来给大家重磅推出考试学习资源:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25