
你需要知道的四类数据环境
詹姆斯·马丁提出“数据环境”概念,就是为了进行数据的有序化管理工作。他在《信息工程》和《总体数据规划方法论》中将计算机的数据环境分为4种类型,要求我们清楚地了解它们之间的区别和各自的特征。
第一类数据环境:数据文件。早期的数据处理还没有出现数据库管理系统(实际上是一种操纵数据库的软件),系统分析员和程序员根据应用的需要,用程序语言分散地设计实现各种数据文件。这是一种数据组织技术简单、相对容易实现的数据环境。但随着应用程序增加,数据文件数据剧增,会导致很高的维护费用,并且一小点应用的变化都将引起连锁反应,使修改又慢又贵,并很难进行。
第二类数据环境:应用数据库。后来,虽然出现了数据库管理系统,但系统分析员和程序员根据报表的原样“建库”。由于没有在数据分析和组织上下功夫,为分散的应用设计分散的“数据库”实际上并不具备数据库的品质,不能支持数据的共享,因此叫做“应用数据库”。实际上,这种数据环境中的信息系统像数据文件环境一样,随着应用的扩充,应用数据库也在剧增。在这种数据环境中的信息系统,其维护费用仍然很高,有时甚至高于第一类数据环境。该类数据环境还没有发挥使用数据库的主要优越性。
第三类数据环境:主题数据库。这是一种真正意义上的数据库,经过科学的规划与设计,其结构与使用它的处理过程是独立的。各种面向业务主题的数据,如顾客数据、产品数据或人事数据,通过一些共享数据库被联系和体现出来。这种主题数据库的特点是:经过严格的数据分析,建立模型需要花费时间,但其后的维护费用很低。最终(但不是立即)会使应用开发加快,并能使用户直接与这些数据库交互使用数据。建立这种数据环境,需要改变传统的系统分析方法和整个数据处理的管理方法,如果不善,也会蜕变成第二类(或者可能是第一类)数据环境。
第四类数据环境:信息检索系统。建立这种数据环境的目的是保证信息检索和快速查询的需要,以支持高层管理和辅助决策,而不是大量的事务管理。后来,称这种数据环境为数据仓库,它是面向主题的、单一的、完整的和一致的数据存储。数据从多种数据源获取,经过加工成为最终用户在一定程度上可理解的形式。可以说数据仓库是主题数据库的集成,是深加工的信息。
主题数据库与企业中的各种业务主题相关,而不是与具体的计算机应用程序相关。企业中需要建立的典型的主题数据库有:产品、客户、零部件、供应商、订货、账户、员工、文件资料、工程规范等。各种应用程序是使用这些主题数据库的,有的应用程序只存取一两个主题数据库,有的应用程序要与多个主题数据库打交道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08